scholarly journals Toward massless and massive event shapes in the large-β0 limit

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
N. G. Gracia ◽  
V. Mateu

Abstract We present results for SCET and bHQET matching coefficients and jet functions in the large-β0 limit. Our computations exactly predict all terms of the form $$ {\alpha}_s^{n+1}{n}_f^n $$ α s n + 1 n f n for any n ≥ 0, and we find full agreement with the coefficients computed in the full theory up to $$ \mathcal{O}\left({\alpha}_s^4\right) $$ O α s 4 . We obtain all-order closed expressions for the cusp and non-cusp anomalous dimensions (which turn out to be unambiguous) as well as matrix elements (with ambiguities) in this limit, which can be easily expanded to arbitrarily high powers of αs using recursive algorithms to obtain the corresponding fixed-order coefficients. Examining the poles laying on the positive real axis of the Borel-transform variable u we quantify the perturbative convergence of a series and estimate the size of non-perturbative corrections. We find a so far unknown u = 1/2 renormalon in the bHQET hard factor Hm that affects the normalization of the peak differential cross section for boosted top quark pair production. For ambiguous series the so-called Borel sum is defined with the principal value prescription. Furthermore, one can assign an ambiguity based on the arbitrariness of avoiding the poles by contour deformation into the positive or negative imaginary half-plane. Finally, we compute the relation between the pole mass and four low-scale short distance masses in the large-β0 approximation (MSR, RS and two versions of the jet mass), work out their μ- and R-evolution in this limit, and study how their implementation improves the convergence of the position-space bHQET jet function, whose three-loop coefficient in full QCD is numerically estimated.

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Jeremy Baron ◽  
Daniel Reichelt ◽  
Steffen Schumann ◽  
Niklas Schwanemann ◽  
Vincent Theeuwes

Abstract Soft-drop grooming of hadron-collision final states has the potential to significantly reduce the impact of non-perturbative corrections, and in particular the underlying-event contribution. This eventually will enable a more direct comparison of accurate perturbative predictions with experimental measurements. In this study we consider soft-drop groomed dijet event shapes. We derive general results needed to perform the resummation of suitable event-shape variables to next-to-leading logarithmic (NLL) accuracy matched to exact next-to-leading order (NLO) QCD matrix elements. We compile predictions for the transverse-thrust shape accurate to NLO + NLL′ using the implementation of the Caesar formalism in the Sherpa event generator framework. We complement this by state-of-the-art parton- and hadron-level predictions based on NLO QCD matrix elements matched with parton showers. We explore the potential to mitigate non-perturbative corrections for particle-level and track-based measurements of transverse thrust by considering a wide range of soft-drop parameters. We find that soft-drop grooming indeed is very efficient in removing the underlying event. This motivates future experimental measurements to be compared to precise QCD predictions and employed to constrain non-perturbative models in Monte-Carlo simulations.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
M. Aaboud ◽  
◽  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
...  

Abstract A measurement of observables sensitive to spin correlations in $$t\bar{t}$$tt¯ production is presented, using 36.1 $$\hbox {fb}^{-1}$$fb-1 of pp collision data at $$\sqrt{s} = 13$$s=13 TeV recorded with the ATLAS detector at the Large Hadron Collider. Differential cross-sections are measured in events with exactly one electron and one muon with opposite-sign electric charge as a function of the azimuthal opening angle and the absolute difference in pseudorapidity between the electron and muon candidates in the laboratory frame. The azimuthal opening angle is also measured as a function of the invariant mass of the $$t\bar{t}$$tt¯ system. The measured differential cross-sections are compared to predictions by several NLO Monte Carlo generators and fixed-order calculations. The observed degree of spin correlation is somewhat higher than predicted by the generators used. The data are consistent with the prediction of one of the fixed-order calculations at NLO, but agree less well with higher-order predictions. Using these leptonic observables, a search is performed for pair production of supersymmetric top squarks decaying into Standard Model top quarks and light neutralinos. Top squark masses between 170 and 230 GeV are largely excluded at the 95% confidence level for kinematically allowed values of the neutralino mass.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Tristan McLoughlin ◽  
Raul Pereira ◽  
Anne Spiering

Abstract We consider non-planar one-loop anomalous dimensions in maximally supersymmetric Yang-Mills theory and its marginally deformed analogues. Using the basis of Bethe states, we compute matrix elements of the dilatation operator and find compact expressions in terms of off-shell scalar products and hexagon-like functions. We then use non-degenerate quantum-mechanical perturbation theory to compute the leading 1/N2 corrections to operator dimensions and as an example compute the large R-charge limit for two-excitation states through subleading order in the R-charge. Finally, we numerically study the distribution of level spacings for these theories and show that they transition from the Poisson distribution for integrable systems at infinite N to the GOE Wigner-Dyson distribution for quantum chaotic systems at finite N.


1989 ◽  
Vol 04 (03) ◽  
pp. 617-625 ◽  
Author(s):  
V. BARGER ◽  
J. OHNEMUS ◽  
R. J. N. PHILLIPS

Density matrix techniques in the helicity basis allow us to write down explicitly the squared matrix elements for tree-level hadroproduction and weak decay of very heavy top quark pairs, that decay before hadronization. This treatment includes the full effects of quark spin correlation. We illustrate the effects of spin correlation on physical distributions in [Formula: see text] dilepton events, [Formula: see text], [Formula: see text], [Formula: see text], for the case mt =120 GeV at [Formula: see text], the energy of the Tevatron collider. The effects of spin correlation are quantitatively small compared to calculations that ignore them, giving corrections of order 10% or less in the physical distributions studied.


2018 ◽  
Vol 192 ◽  
pp. 00006
Author(s):  
Stefan Groote ◽  
Jürgen G. Körner

We present partial results on NLO and NNLO QCD, and NLO electroweak corrections to polarized top quark decays. In parallel we derive positivity bounds for the polarized structure functions in polarized top quark decays and check them against the perturbative corrections to the structure functions.


Author(s):  
M. Jacobus ◽  
M. Jamshidi ◽  
C. Abdallah ◽  
P. Dorato ◽  
D. Bernstein

2017 ◽  
Vol 32 (02n03) ◽  
pp. 1750008 ◽  
Author(s):  
E. Boos ◽  
V. Bunichev ◽  
L. Dudko ◽  
M. Perfilov

A method to simulate anomalous fermion–boson interactions in Wtb vertex is presented with a minimal set of simulated samples of single top quark events at the LHC energies. In the proposed method, additional subsidiary vector fields corresponding to the Standard Model gauge fields are implemented for each type of the anomalous vertex structure. The method allows to simulate a manifestation of anomalous gauge couplings in two approaches used in experimental analyses either keeping only the linear order contributions in the anomalous couplings or keeping all contributions in numerators and denominators as appeared in matrix elements. For the processes with several anomalous couplings contributing simultaneously to the production and to the decay as well as to various interference terms the method allows to model correctly the dependence of kinematic distributions on anomalous couplings. The method shows how to generate a minimum set of event samples needed for a concrete analysis. All the single top quark production mechanisms, t-, s- and associative tW-channels, are considered. The correctness of the proposed method is demonstrated.


Fractals ◽  
1996 ◽  
Vol 04 (04) ◽  
pp. 533-541 ◽  
Author(s):  
KIM-KHOON ONG ◽  
AICHYUN SHIAH ◽  
ZDZISLAW E. MUSIELAK

The iteration function [Formula: see text], where both α and β are positive real numbers, is used to generate families of the generalized Julia sets, [Formula: see text]. The calculations are restricted to the principal value of zα + iβ and the obtained results demonstrate that classical Julia sets, [Formula: see text] are significantly deformed when non-zero values of β are considered. As a result of this deformation, the area of stable regions in the complex plane changes and a process of splitting and shifting takes place along the real axis. It is shown that this process is responsible for the formation of new fractal images of generalized Julia sets.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Qing jun Jin ◽  
Ke Ren ◽  
Gang Yang

Abstract We consider two-loop renormalization of high-dimensional Lorentz scalar operators in the gluonic sector of QCD. These operators appear also in the Higgs effective theory obtained by integrating out the top quark loop in the gluon fusion process. We first discuss the classification of operators and how to construct a good set of basis using both off-shell field theory method and on-shell form factor formalism. To study loop corrections, we apply efficient unitarity-IBP strategy and compute the two-loop minimal form factors of length-3 operators up to dimension sixteen. From the UV divergences of form factor results, we extract the renormalization matrices and analyze the operator mixing behavior in detail. The form factors we compute are also equivalent to Higgs plus three-gluon amplitudes that capture high-order top mass corrections in Higgs EFT. We obtain the analytic finite remainder functions which exhibit several universal transcendentality structures.


Sign in / Sign up

Export Citation Format

Share Document