scholarly journals Selfinjective quivers with potential and 2-representation-finite algebras

2011 ◽  
Vol 147 (6) ◽  
pp. 1885-1920 ◽  
Author(s):  
Martin Herschend ◽  
Osamu Iyama

AbstractWe study quivers with potential (QPs) whose Jacobian algebras are finite-dimensional selfinjective. They are an analogue of the ‘good QPs’ studied by Bocklandt whose Jacobian algebras are 3-Calabi–Yau. We show that 2-representation-finite algebras are truncated Jacobian algebras of selfinjective QPs, which are factor algebras of Jacobian algebras by certain sets of arrows called cuts. We show that selfinjectivity of QPs is preserved under iterated mutation with respect to orbits of the Nakayama permutation. We give a sufficient condition for all truncated Jacobian algebras of a fixed QP to be derived equivalent. We introduce planar QPs which provide us with a rich source of selfinjective QPs.

Author(s):  
Guy Bouchitté ◽  
Ornella Mattei ◽  
Graeme W. Milton ◽  
Pierre Seppecher

In many applications of structural engineering, the following question arises: given a set of forces f 1 ,  f 2 , …,  f N applied at prescribed points x 1 ,  x 2 , …,  x N , under what constraints on the forces does there exist a truss structure (or wire web) with all elements under tension that supports these forces? Here we provide answer to such a question for any configuration of the terminal points x 1 ,  x 2 , …,  x N in the two- and three-dimensional cases. Specifically, the existence of a web is guaranteed by a necessary and sufficient condition on the loading which corresponds to a finite dimensional linear programming problem. In two dimensions, we show that any such web can be replaced by one in which there are at most P elementary loops, where elementary means that the loop cannot be subdivided into subloops, and where P is the number of forces f 1 ,  f 2 , …,  f N applied at points strictly within the convex hull of x 1 ,  x 2 , …,  x N . In three dimensions, we show that, by slightly perturbing f 1 ,  f 2 , …,  f N , there exists a uniloadable web supporting this loading. Uniloadable means it supports this loading and all positive multiples of it, but not any other loading. Uniloadable webs provide a mechanism for channelling stress in desired ways.


Author(s):  
HAZEL BROWNE

Abstract We present several results on the connectivity of McKay quivers of finite-dimensional complex representations of finite groups, with no restriction on the faithfulness or self-duality of the representations. We give examples of McKay quivers, as well as quivers that cannot arise as McKay quivers, and discuss a necessary and sufficient condition for two finite groups to share a connected McKay quiver.


1997 ◽  
Vol 39 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Ibrahim Assem ◽  
Peter Brown

Letkbe an algebraically closed field. By an algebra is meant an associative finite dimensionalk-algebra A with an identity. We are interested in studying the representation theory of Λ, that is, in describing the category mod Λ of finitely generated right Λ-modules. Thus we may, without loss of generality, assume that Λ is basic and connected. For our purpose, one strategy consists in using covering techniques to reduce the problem to the case where the algebra is simply connected, then in solving the problem in this latter case. This strategy was proved efficient for representation-finite algebras (that is, algebras having only finitely many isomorphism classes of indecomposable modules) and representation-finite simply connected algebras are by now well-understood: see, for instance [5], [7],[8]. While little is known about covering techniques in the representation-infinite case, it is clearly an interesting problem to describe the representation-infinite simply connected algebras. The objective of this paper is to give a criterion for the simple connectedness of a class of (mostly representationinfinite) algebras.


1994 ◽  
Vol 05 (03) ◽  
pp. 389-419 ◽  
Author(s):  
IVAN PENKOV ◽  
VERA SERGANOVA

A theory of highest weight modules over an arbitrary finite-dimensional Lie superalgebra is constructed. A necessary and sufficient condition for the finite-dimensionality of such modules is proved. Generic finite-dimensional irreducible representations are defined and an explicit character formula for such representations is written down. It is conjectured that this formula applies to any generic finite-dimensional irreducible module over any finite-dimensional Lie superalgebra. The conjecture is proved for several classes of Lie superalgebras, in particular for all solvable ones, for all simple ones, and for certain semi-simple ones.


Author(s):  
M. H. Pearl

The notion of the inverse of a matrix with entries from the real or complex fields was generalized by Moore (6, 7) in 1920 to include all rectangular (finite dimensional) matrices. In 1951, Bjerhammar (2, 3) rediscovered the generalized inverse for rectangular matrices of maximal rank. In 1955, Penrose (8, 9) independently rediscovered the generalized inverse for arbitrary real or complex rectangular matrices. Recently, Arghiriade (1) has given a set of necessary and sufficient conditions that a matrix commute with its generalized inverse. These conditions involve the existence of certain submatrices and can be expressed using the notion of EPr matrices introduced in 1950 by Schwerdtfeger (10). The main purpose of this paper is to prove the following theorem:Theorem 2. A necessary and sufficient condition that the generalized inverse of the matrix A (denoted by A+) commute with A is that A+ can be expressed as a polynomial in A with scalar coefficients.


2015 ◽  
Vol 4 (1) ◽  
pp. 13-23 ◽  
Author(s):  
Kanishka Perera ◽  
Marco Squassina ◽  
Yang Yang

AbstractWe study the Dancer–Fučík spectrum of the fractional p-Laplacian operator. We construct an unbounded sequence of decreasing curves in the spectrum using a suitable minimax scheme. For p = 2, we present a very accurate local analysis. We construct the minimal and maximal curves of the spectrum locally near the points where it intersects the main diagonal of the plane. We give a sufficient condition for the region between them to be nonempty and show that it is free of the spectrum in the case of a simple eigenvalue. Finally, we compute the critical groups in various regions separated by these curves. We compute them precisely in certain regions and prove a shifting theorem that gives a finite-dimensional reduction in certain other regions. This allows us to obtain nontrivial solutions of perturbed problems with nonlinearities crossing a curve of the spectrum via a comparison of the critical groups at zero and infinity.


2018 ◽  
Vol 40 (8) ◽  
pp. 2219-2238 ◽  
Author(s):  
MARK PIRAINO

We study the ergodic properties of a class of measures on $\unicode[STIX]{x1D6F4}^{\mathbb{Z}}$ for which $\unicode[STIX]{x1D707}_{{\mathcal{A}},t}[x_{0}\cdots x_{n-1}]\approx e^{-nP}\Vert A_{x_{0}}\cdots A_{x_{n-1}}\Vert ^{t}$, where ${\mathcal{A}}=(A_{0},\ldots ,A_{M-1})$ is a collection of matrices. The measure $\unicode[STIX]{x1D707}_{{\mathcal{A}},t}$ is called a matrix Gibbs state. In particular, we give a sufficient condition for a matrix Gibbs state to have the weak Bernoulli property. We employ a number of techniques to understand these measures, including a novel approach based on Perron–Frobenius theory. We find that when $t$ is an even integer the ergodic properties of $\unicode[STIX]{x1D707}_{{\mathcal{A}},t}$ are readily deduced from finite-dimensional Perron–Frobenius theory. We then consider an extension of this method to $t>0$ using operators on an infinite- dimensional space. Finally, we use a general result of Bradley to prove the main theorem.


2016 ◽  
Vol 09 (03) ◽  
pp. 379-407
Author(s):  
Benjamin Miesch ◽  
Maël Pavón

We give a necessary and sufficient condition under which gluings of hyperconvex metric spaces along weakly externally hyperconvex subsets are hyperconvex. This leads to a full characterization of hyperconvex gluings of two isometric copies of the same hyperconvex space. Furthermore, we investigate the case of gluings of finite dimensional hyperconvex linear spaces along linear subspaces. For this purpose, we characterize the weakly externally hyperconvex subsets of [Formula: see text] endowed with the maximum norm.


Sign in / Sign up

Export Citation Format

Share Document