scholarly journals Complete reducibility: variations on a theme of Serre

Author(s):  
Maike Gruchot ◽  
Alastair Litterick ◽  
Gerhard Röhrle

AbstractIn this note, we unify and extend various concepts in the area of G-complete reducibility, where G is a reductive algebraic group. By results of Serre and Bate–Martin–Röhrle, the usual notion of G-complete reducibility can be re-framed as a property of an action of a group on the spherical building of the identity component of G. We show that other variations of this notion, such as relative complete reducibility and $$\sigma $$ σ -complete reducibility, can also be viewed as special cases of this building-theoretic definition, and hence a number of results from these areas are special cases of more general properties.

2020 ◽  
Vol 8 ◽  
Author(s):  
MAIKE GRUCHOT ◽  
ALASTAIR LITTERICK ◽  
GERHARD RÖHRLE

We study a relative variant of Serre’s notion of $G$ -complete reducibility for a reductive algebraic group $G$ . We let $K$ be a reductive subgroup of $G$ , and consider subgroups of $G$ that normalize the identity component $K^{\circ }$ . We show that such a subgroup is relatively $G$ -completely reducible with respect to $K$ if and only if its image in the automorphism group of $K^{\circ }$ is completely reducible. This allows us to generalize a number of fundamental results from the absolute to the relative setting. We also derive analogous results for Lie subalgebras of the Lie algebra of $G$ , as well as ‘rational’ versions over nonalgebraically closed fields.


2020 ◽  
Vol 8 ◽  
Author(s):  
Michael Bate ◽  
Benjamin Martin ◽  
Gerhard Röhrle

Let G be a reductive algebraic group—possibly non-connected—over a field k, and let H be a subgroup of G. If $G= {GL }_n$ , then there is a degeneration process for obtaining from H a completely reducible subgroup $H'$ of G; one takes a limit of H along a cocharacter of G in an appropriate sense. We generalise this idea to arbitrary reductive G using the notion of G-complete reducibility and results from geometric invariant theory over non-algebraically closed fields due to the authors and Herpel. Our construction produces a G-completely reducible subgroup $H'$ of G, unique up to $G(k)$ -conjugacy, which we call a k-semisimplification of H. This gives a single unifying construction that extends various special cases in the literature (in particular, it agrees with the usual notion for $G= GL _n$ and with Serre’s ‘G-analogue’ of semisimplification for subgroups of $G(k)$ from [19]). We also show that under some extra hypotheses, one can pick $H'$ in a more canonical way using the Tits Centre Conjecture for spherical buildings and/or the theory of optimal destabilising cocharacters introduced by Hesselink, Kempf, and Rousseau.


1983 ◽  
Vol 27 (3) ◽  
pp. 361-379 ◽  
Author(s):  
G.I. Lehrer

Let G be a connected reductive algebraic group defined over a finite field k. The finite group G(k) of k-rational points of G acts on the spherical building B(G), a polyhedron which is functorially associated with G. We identify the subspace of points of B(G) fixed by a regular semisimple element s of G(k) topologically as a subspace of a sphere (apartment) in B(G) which depends on an element of the Weyl group which is determined by s. Applications include the derivation of the values of certain characters of G(k) at s by means of Lefschetz theory. The characters considered arise from the action of G(k) on the cohomology of equivariant sheaves over B(G).


1986 ◽  
Vol 38 (1) ◽  
pp. 179-214 ◽  
Author(s):  
James Arthur

Suppose that G is a reductive algebraic group defined over a number field F. The trace formula is an identityof distributions. The terms on the right are parametrized by “cuspidal automorphic data”, and are defined in terms of Eisenstein series. They have been evaluated rather explicitly in [3]. The terms on the left are parametrized by semisimple conjugacy classes and are defined in terms of related G(A) orbits. The object of this paper is to evaluate these terms.In previous papers we have already evaluated in two special cases. The easiest case occurs when corresponds to a regular semisimple conjugacy class in G(F). We showed in Section 8 of [1] that for such an , could be expressed as a weighted orbital integral over the conjugacy class of σ. (We actually assumed that was “unramified”, which is slightly more general.) The most difficult case is the opposite extreme, in which corresponds to {1}.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Falk Bannuscher ◽  
Alastair Litterick ◽  
Tomohiro Uchiyama

Abstract Let 𝑘 be a non-perfect separably closed field. Let 𝐺 be a connected reductive algebraic group defined over 𝑘. We study rationality problems for Serre’s notion of complete reducibility of subgroups of 𝐺. In particular, we present the first example of a connected non-abelian 𝑘-subgroup 𝐻 of 𝐺 that is 𝐺-completely reducible but not 𝐺-completely reducible over 𝑘, and the first example of a connected non-abelian 𝑘-subgroup H ′ H^{\prime} of 𝐺 that is 𝐺-completely reducible over 𝑘 but not 𝐺-completely reducible. This is new: all previously known such examples are for finite (or non-connected) 𝐻 and H ′ H^{\prime} only.


1971 ◽  
Vol 12 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Bhama Srinivasan

Let K be an algebraically closed field of characteristic ρ >0. If G is a connected, simple connected, semisimple linear algebraic group defined over K and σ an endomorphism of G onto G such that the subgroup Gσ of fixed points of σ is finite, Steinberg ([6] [7]) has shown that there is a complex irreducible character χ of Gσ with the following properties. χ vanishes at all elements of Gσ which are not semi- simple, and, if x ∈ G is semisimple, χ(x) = ±n(x) where n(x)is the order of a Sylow p-subgroup of (ZG(x))σ (ZG(x) is the centraliser of x in G). If G is simple he has, in [6], identified the possible groups Gσ they are the Chevalley groups and their twisted analogues over finite fields, that is, the ‘simply connected’ versions of finite simple groups of Lie type. In this paper we show, under certain restrictions on the type of the simple algebraic group G an on the characteristic of K, that χ can be expressed as a linear combination with integral coefficients of characters induced from linear characters of certain naturally defined subgroups of Gσ. This expression for χ gives an explanation for the occurence of n(x) in the formula for χ (x), and also gives an interpretation for the ± 1 occuring in the formula in terms of invariants of the reductive algebraic group ZG(x).


2019 ◽  
Vol 2019 (754) ◽  
pp. 1-15
Author(s):  
Christine Huyghe ◽  
Tobias Schmidt

Abstract Soient p un nombre premier, V un anneau de valuation discrète complet d’inégales caractéristiques (0,p) , et G un groupe réductif et deployé sur \operatorname{Spec}V . Nous obtenons un théorème de localisation, en utilisant les distributions arithmétiques, pour le faisceau des opérateurs différentiels arithmétiques sur la variété de drapeaux formelle de G. Nous donnons une application à la cohomologie rigide pour des ouverts dans la variété de drapeaux en caractéristique p. Let p be a prime number, V a complete discrete valuation ring of unequal characteristics (0,p) , and G a connected split reductive algebraic group over \operatorname{Spec}V . We obtain a localization theorem, involving arithmetic distributions, for the sheaf of arithmetic differential operators on the formal flag variety of G. We give an application to the rigid cohomology of open subsets in the characteristic p flag variety.


2003 ◽  
Vol 170 ◽  
pp. 47-72 ◽  
Author(s):  
Anne-Marie Aubert

AbstractLetGbe a connected reductive algebraic group over an algebraic closure of a finite field of characteristicp. Under the assumption thatpis good forG, we prove that for each character sheafAonGwhich has nonzero restriction to the unipotent variety ofG, there exists a unipotent classCAcanonically attached toA, such thatAhas non-zero restriction onCA, and any unipotent classCinGon whichAhas non-zero restriction has dimension strictly smaller than that ofCA.


Sign in / Sign up

Export Citation Format

Share Document