L-Indistinguishability For SL (2)

1979 ◽  
Vol 31 (4) ◽  
pp. 726-785 ◽  
Author(s):  
J-P. Labesse ◽  
R. P. Langlands

The notion of L-indistinguishability, like many others current in the study of L-functions, has yet to be completely defined, but it is in our opinion important for the study of automorphic forms and of representations of algebraic groups. In this paper we study it for the simplest class of groups, basically forms of SL(2). Although the definition we use is applicable to very few groups, there is every reason to believe that the results will have general analogues [12].The phenomena which the notion is intended to express have been met–and exploited–by others (Hecke [5] § 13, Shimura [17]). Their source seems to lie in the distinction between conjugacy and stable conjugacy. If F is a field, G a reductive algebraic group over F, and the algebraic closure of F then two elements of G(F) may be conjugate in without being conjugate in G(F).

2003 ◽  
Vol 170 ◽  
pp. 47-72 ◽  
Author(s):  
Anne-Marie Aubert

AbstractLetGbe a connected reductive algebraic group over an algebraic closure of a finite field of characteristicp. Under the assumption thatpis good forG, we prove that for each character sheafAonGwhich has nonzero restriction to the unipotent variety ofG, there exists a unipotent classCAcanonically attached toA, such thatAhas non-zero restriction onCA, and any unipotent classCinGon whichAhas non-zero restriction has dimension strictly smaller than that ofCA.


2013 ◽  
Vol 149 (7) ◽  
pp. 1061-1090 ◽  
Author(s):  
Harald Grobner

AbstractLet $G$ be a connected, reductive algebraic group over a number field $F$ and let $E$ be an algebraic representation of ${G}_{\infty } $. In this paper we describe the Eisenstein cohomology ${ H}_{\mathrm{Eis} }^{q} (G, E)$ of $G$ below a certain degree ${q}_{ \mathsf{res} } $ in terms of Franke’s filtration of the space of automorphic forms. This entails a description of the map ${H}^{q} ({\mathfrak{m}}_{G} , K, \Pi \otimes E)\rightarrow { H}_{\mathrm{Eis} }^{q} (G, E)$, $q\lt {q}_{ \mathsf{res} } $, for all automorphic representations $\Pi $ of $G( \mathbb{A} )$ appearing in the residual spectrum. Moreover, we show that below an easily computable degree ${q}_{ \mathsf{max} } $, the space of Eisenstein cohomology ${ H}_{\mathrm{Eis} }^{q} (G, E)$ is isomorphic to the cohomology of the space of square-integrable, residual automorphic forms. We discuss some more consequences of our result and apply it, in order to derive a result on the residual Eisenstein cohomology of inner forms of ${\mathrm{GL} }_{n} $ and the split classical groups of type ${B}_{n} $, ${C}_{n} $, ${D}_{n} $.


2020 ◽  
Vol 8 ◽  
Author(s):  
Michael Bate ◽  
Benjamin Martin ◽  
Gerhard Röhrle

Let G be a reductive algebraic group—possibly non-connected—over a field k, and let H be a subgroup of G. If $G= {GL }_n$ , then there is a degeneration process for obtaining from H a completely reducible subgroup $H'$ of G; one takes a limit of H along a cocharacter of G in an appropriate sense. We generalise this idea to arbitrary reductive G using the notion of G-complete reducibility and results from geometric invariant theory over non-algebraically closed fields due to the authors and Herpel. Our construction produces a G-completely reducible subgroup $H'$ of G, unique up to $G(k)$ -conjugacy, which we call a k-semisimplification of H. This gives a single unifying construction that extends various special cases in the literature (in particular, it agrees with the usual notion for $G= GL _n$ and with Serre’s ‘G-analogue’ of semisimplification for subgroups of $G(k)$ from [19]). We also show that under some extra hypotheses, one can pick $H'$ in a more canonical way using the Tits Centre Conjecture for spherical buildings and/or the theory of optimal destabilising cocharacters introduced by Hesselink, Kempf, and Rousseau.


2014 ◽  
Vol 14 (1) ◽  
pp. 185-220 ◽  
Author(s):  
Abe Noriyuki ◽  
Kaneda Masaharu

AbstractWe show that the modules for the Frobenius kernel of a reductive algebraic group over an algebraically closed field of positive characteristic $p$ induced from the $p$-regular blocks of its parabolic subgroups can be $\mathbb{Z}$-graded. In particular, we obtain that the modules induced from the simple modules of $p$-regular highest weights are rigid and determine their Loewy series, assuming the Lusztig conjecture on the irreducible characters for the reductive algebraic groups, which is now a theorem for large $p$. We say that a module is rigid if and only if it admits a unique filtration of minimal length with each subquotient semisimple, in which case the filtration is called the Loewy series.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Falk Bannuscher ◽  
Alastair Litterick ◽  
Tomohiro Uchiyama

Abstract Let 𝑘 be a non-perfect separably closed field. Let 𝐺 be a connected reductive algebraic group defined over 𝑘. We study rationality problems for Serre’s notion of complete reducibility of subgroups of 𝐺. In particular, we present the first example of a connected non-abelian 𝑘-subgroup 𝐻 of 𝐺 that is 𝐺-completely reducible but not 𝐺-completely reducible over 𝑘, and the first example of a connected non-abelian 𝑘-subgroup H ′ H^{\prime} of 𝐺 that is 𝐺-completely reducible over 𝑘 but not 𝐺-completely reducible. This is new: all previously known such examples are for finite (or non-connected) 𝐻 and H ′ H^{\prime} only.


Author(s):  
Maike Gruchot ◽  
Alastair Litterick ◽  
Gerhard Röhrle

AbstractIn this note, we unify and extend various concepts in the area of G-complete reducibility, where G is a reductive algebraic group. By results of Serre and Bate–Martin–Röhrle, the usual notion of G-complete reducibility can be re-framed as a property of an action of a group on the spherical building of the identity component of G. We show that other variations of this notion, such as relative complete reducibility and $$\sigma $$ σ -complete reducibility, can also be viewed as special cases of this building-theoretic definition, and hence a number of results from these areas are special cases of more general properties.


2020 ◽  
Vol 8 ◽  
Author(s):  
MAIKE GRUCHOT ◽  
ALASTAIR LITTERICK ◽  
GERHARD RÖHRLE

We study a relative variant of Serre’s notion of $G$ -complete reducibility for a reductive algebraic group $G$ . We let $K$ be a reductive subgroup of $G$ , and consider subgroups of $G$ that normalize the identity component $K^{\circ }$ . We show that such a subgroup is relatively $G$ -completely reducible with respect to $K$ if and only if its image in the automorphism group of $K^{\circ }$ is completely reducible. This allows us to generalize a number of fundamental results from the absolute to the relative setting. We also derive analogous results for Lie subalgebras of the Lie algebra of $G$ , as well as ‘rational’ versions over nonalgebraically closed fields.


2009 ◽  
Vol 146 (1) ◽  
pp. 21-57 ◽  
Author(s):  
Harald Grobner

AbstractLetGbe the simple algebraic group Sp(2,2), to be defined over ℚ. It is a non-quasi-split, ℚ-rank-two inner form of the split symplectic group Sp8of rank four. The cohomology of the space of automorphic forms onGhas a natural subspace, which is spanned by classes represented by residues and derivatives of cuspidal Eisenstein series. It is called Eisenstein cohomology. In this paper we give a detailed description of the Eisenstein cohomologyHqEis(G,E) ofGin the case of regular coefficientsE. It is spanned only by holomorphic Eisenstein series. For non-regular coefficientsEwe really have to detect the poles of our Eisenstein series. SinceGis not quasi-split, we are out of the scope of the so-called ‘Langlands–Shahidi method’ (cf. F. Shahidi,On certainL-functions, Amer. J. Math.103(1981), 297–355; F. Shahidi,On the Ramanujan conjecture and finiteness of poles for certainL-functions, Ann. of Math. (2)127(1988), 547–584). We apply recent results of Grbac in order to find the double poles of Eisenstein series attached to the minimal parabolicP0ofG. Having collected this information, we determine the square-integrable Eisenstein cohomology supported byP0with respect to arbitrary coefficients and prove a vanishing result. This will exemplify a general theorem we prove in this paper on the distribution of maximally residual Eisenstein cohomology classes.


2016 ◽  
Vol 224 (1) ◽  
pp. 93-167 ◽  
Author(s):  
JAY TAYLOR

Let $\mathbf{G}$ be a connected reductive algebraic group over an algebraic closure $\overline{\mathbb{F}_{p}}$ of the finite field of prime order $p$ and let $F:\mathbf{G}\rightarrow \mathbf{G}$ be a Frobenius endomorphism with $G=\mathbf{G}^{F}$ the corresponding $\mathbb{F}_{q}$-rational structure. One of the strongest links we have between the representation theory of $G$ and the geometry of the unipotent conjugacy classes of $\mathbf{G}$ is a formula, due to Lusztig (Adv. Math. 94(2) (1992), 139–179), which decomposes Kawanaka’s Generalized Gelfand–Graev Representations (GGGRs) in terms of characteristic functions of intersection cohomology complexes defined on the closure of a unipotent class. Unfortunately, the formula given in Lusztig (Adv. Math. 94(2) (1992), 139–179) is only valid under the assumption that $p$ is large enough. In this article, we show that Lusztig’s formula for GGGRs holds under the much milder assumption that $p$ is an acceptable prime for $\mathbf{G}$ ($p$ very good is sufficient but not necessary). As an application we show that every irreducible character of $G$, respectively, character sheaf of $\mathbf{G}$, has a unique wave front set, respectively, unipotent support, whenever $p$ is good for $\mathbf{G}$.


Sign in / Sign up

Export Citation Format

Share Document