scholarly journals Lattice structure of Weyl groups via representation theory of preprojective algebras

2018 ◽  
Vol 154 (6) ◽  
pp. 1269-1305 ◽  
Author(s):  
Osamu Iyama ◽  
Nathan Reading ◽  
Idun Reiten ◽  
Hugh Thomas

This paper studies the combinatorics of lattice congruences of the weak order on a finite Weyl group $W$, using representation theory of the corresponding preprojective algebra $\unicode[STIX]{x1D6F1}$. Natural bijections are constructed between important objects including join-irreducible congruences, join-irreducible (respectively, meet-irreducible) elements of $W$, indecomposable $\unicode[STIX]{x1D70F}$-rigid (respectively, $\unicode[STIX]{x1D70F}^{-}$-rigid) modules and layers of $\unicode[STIX]{x1D6F1}$. The lattice-theoretically natural labelling of the Hasse quiver by join-irreducible elements of $W$ is shown to coincide with the algebraically natural labelling by layers of $\unicode[STIX]{x1D6F1}$. We show that layers of $\unicode[STIX]{x1D6F1}$ are nothing but bricks (or equivalently stones, or 2-spherical modules). The forcing order on join-irreducible elements of $W$ (arising from the study of lattice congruences) is described algebraically in terms of the doubleton extension order. We give a combinatorial description of indecomposable $\unicode[STIX]{x1D70F}^{-}$-rigid modules for type $A$ and $D$.

2011 ◽  
Vol 10 (05) ◽  
pp. 849-864 ◽  
Author(s):  
JULIANNE G. RAINBOLT

The initial section of this article provides illustrative examples on two ways to construct the Weyl group of a finite group of Lie type. These examples provide the background for a comparison of the elements in the Weyl groups of GL(n, q) and U(n, q) that are used in the construction of the standard bases of the Hecke algebras of the Gelfand–Graev representations of GL(n, q) and U(n, q). Using a theorem of Steinberg, a connection between a theoretic description of bases of these Hecke algebras and a combinatorial description of these bases is provided. This leads to an algorithmic method for generating bases of the Hecke algebras of the Gelfand–Graev representations of GL(n, q) and U(n, q).


2019 ◽  
Vol 72 (4) ◽  
pp. 867-899
Author(s):  
Joël Gay ◽  
Vincent Pilaud

AbstractWe define a natural lattice structure on all subsets of a finite root system that extends the weak order on the elements of the corresponding Coxeter group. For crystallographic root systems, we show that the subposet of this lattice induced by antisymmetric closed subsets of roots is again a lattice. We then study further subposets of this lattice that naturally correspond to the elements, the intervals, and the faces of the permutahedron and the generalized associahedra of the corresponding Weyl group. These results extend to arbitrary finite crystallographic root systems the recent results of G. Chatel, V. Pilaud, and V. Pons on the weak order on posets and its induced subposets.


2007 ◽  
Vol 09 (01) ◽  
pp. 1-20
Author(s):  
KEQUAN DING ◽  
SIYE WU

We introduce inversions for classical Weyl group elements and relate them, by counting, to the length function, root systems and Schubert cells in flag manifolds. Special inversions are those that only change signs in the Weyl groups of types Bn, Cnand Dn. Their counting is related to the (only) generator of the Weyl group that changes signs, to the corresponding roots, and to a special subvariety in the flag manifold fixed by a finite group.


Author(s):  
G. I. Lehrer ◽  
T. Shoji

AbstractLet G be a connected reductive linear algebraic group over the complex numbers. For any element A of the Lie algebra of G, there is an action of the Weyl group W on the cohomology Hi(BA) of the subvariety BA (see below for the definition) of the flag variety of G. We study this action and prove an inequality for the multiplicity of the Weyl group representations which occur ((4.8) below). This involves geometric data. This inequality is applied to determine the multiplicity of the reflection representation of W when A is a nilpotent element of “parabolic type”. In particular this multiplicity is related to the geometry of the corresponding hyperplane complement.


2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
José O. Araujo ◽  
Tim Bratten ◽  
Cesar L. Maiarú

In an article published in 1980, Farahat and Peel realized the irreducible modular representations of the symmetric group. One year later, Al-Aamily, Morris, and Peel constructed the irreducible modular representations for a Weyl group of typeBn. In both cases, combinatorial methods were used. Almost twenty years later, using a geometric construction based on the ideas of Macdonald, first Aguado and Araujo and then Araujo, Bigeón, and Gamondi also realized the irreducible modular representations for the Weyl groups of typesAnandBn. In this paper, we extend the geometric construction based on the ideas of Macdonald to realize the irreducible modular representations of the complex reflection group of typeG(m,1,n).


1991 ◽  
Vol 44 (2) ◽  
pp. 337-344 ◽  
Author(s):  
Philip D. Ryan

Let G be a Weyl group of type B, and T a set of representatives of the conjugacy classes of self-inverse elements of G. For each t in T, we construct a (complex) linear character πt of the centraliser of t in G, such that the sum of the characters of G induced from the πt contains each irreducible complex character of G with multiplicity precisely 1. For Weyl groups of type A (that is, for the symmetric groups), a similar result was published recently by Inglis, Richardson and Saxl.


10.37236/9982 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Antoine Abram ◽  
Nathan Chapelier-Laget ◽  
Christophe Reutenauer

Motivated by the study of affine Weyl groups, a ranked poset structure is defined on the set of circular permutations in $S_n$ (that is, $n$-cycles). It is isomorphic to the poset of so-called admitted vectors, and to an interval in the affine symmetric group $\tilde S_n$ with the weak order. The poset is a semidistributive lattice, and the rank function, whose range is cubic in $n$, is computed by some special formula involving inversions. We prove also some links with Eulerian numbers, triangulations of an $n$-gon, and Young's lattice.


2011 ◽  
Vol 54 (4) ◽  
pp. 663-675 ◽  
Author(s):  
Ruth Haas ◽  
Aloysius G. Helminck

AbstractLetW be a Weyl group, Σ a set of simple reflections inW related to a basis Δ for the root system Φ associated with W and θ an involution such that θ(Δ) = Δ. We show that the set of θ- twisted involutions in W, = {w ∈ W | θ(w) = w–1} is in one to one correspondence with the set of regular involutions . The elements of are characterized by sequences in Σ which induce an ordering called the Richardson–Springer Poset. In particular, for Φ irreducible, the ascending Richardson–Springer Poset of , for nontrivial θ is identical to the descending Richardson–Springer Poset of .


Sign in / Sign up

Export Citation Format

Share Document