scholarly journals SPIN VERLINDE SPACES AND PRYM THETA FUNCTIONS

1999 ◽  
Vol 78 (1) ◽  
pp. 52-76 ◽  
Author(s):  
W. M. OXBURY

It is shown that the theta functions of level $n$ on the principally polarised Prym varieties of an algebraic curve are dual to the sections of the orthogonal theta line bundle on the moduli space of Spin($n$)-bundles over the curve. As a by-product of our computations, we also note that when $n$ is odd, the Pfaffian line bundle on moduli space has a basis of sections labelled by the even theta characteristics of the curve.

2001 ◽  
Vol 63 (3) ◽  
pp. 513-532 ◽  
Author(s):  
C. PAULY ◽  
S. RAMANAN

The paper proves canonical isomorphisms between Spin Verlinde spaces, that is, spaces of global sections of a determinant line bundle over the moduli space of semistable Spinn-bundles over a smooth projective curve C, and the dual spaces of theta functions over Prym varieties of unramified double covers of C.


2017 ◽  
Vol 24 (01) ◽  
pp. 1-52
Author(s):  
Xiaotao Sun

This survey is based on my lectures given in the last few years. As a reference, constructions of moduli spaces of parabolic sheaves and generalized parabolic sheaves are provided. By a refinement of the proof of vanishing theorems, we show, without using vanishing theorems, a new observation that [Formula: see text] is independent of all of the choices for any smooth curves. The estimate of various codimensions and computation of canonical line bundle of moduli space of generalized parabolic sheaves on a reducible curve are provided in Section 6, which is completely new.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Anthony Ashmore ◽  
Sebastian Dumitru ◽  
Burt A. Ovrut

Abstract The strongly coupled heterotic M-theory vacuum for both the observable and hidden sectors of the B − L MSSM theory is reviewed, including a discussion of the “bundle” constraints that both the observable sector SU(4) vector bundle and the hidden sector bundle induced from a single line bundle must satisfy. Gaugino condensation is then introduced within this context, and the hidden sector bundles that exhibit gaugino condensation are presented. The condensation scale is computed, singling out one line bundle whose associated condensation scale is low enough to be compatible with the energy scales available at the LHC. The corresponding region of Kähler moduli space where all bundle constraints are satisfied is presented. The generic form of the moduli dependent F-terms due to a gaugino superpotential — which spontaneously break N = 1 supersymmetry in this sector — is presented and then given explicitly for the unique line bundle associated with the low condensation scale. The moduli-dependent coefficients for each of the gaugino and scalar field soft supersymmetry breaking terms are computed leading to a low-energy effective Lagrangian for the observable sector matter fields. We then show that at a large number of points in Kähler moduli space that satisfy all “bundle” constraints, these coefficients are initial conditions for the renormalization group equations which, at low energy, lead to completely realistic physics satisfying all phenomenological constraints. Finally, we show that a substantial number of these initial points also satisfy a final constraint arising from the quadratic Higgs-Higgs conjugate soft supersymmetry breaking term.


2018 ◽  
Vol 167 (01) ◽  
pp. 61-64 ◽  
Author(s):  
INDER KAUR

AbstractLet K be a field of characteristic 0. Fix integers r, d coprime with r ⩾ 2. Let XK be a smooth, projective, geometrically connected curve of genus g ⩾ 2 defined over K. Assume there exists a line bundle ${\cal L}_K$ on XK of degree d. In this paper we prove the existence of a stable locally free sheaf on XK with rank r and determinant ${\cal L}_K$. This trivially proves the C1 conjecture in mixed characteristic for the moduli space of stable locally free sheaves of fixed rank and determinant over a smooth, projective curve.


2014 ◽  
Vol 214 ◽  
pp. 53-77 ◽  
Author(s):  
Robin De Jong

AbstractWe prove a variant of a formula due to Zhang relating the Beilinson– Bloch height of the Gross–Schoen cycle on a pointed curve with the self-intersection of its relative dualizing sheaf. In our approach, the height of the Gross–Schoen cycle occurs as the degree of a suitable Bloch line bundle. We show that the Chern form of this line bundle is nonnegative, and we calculate its class in the Picard group of the moduli space of pointed stable curves of compact type. The basic tools are normal functions and biextensions associated to the cohomology of the universal Jacobian.


2017 ◽  
Vol 4 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Zsolt Patakfalvi ◽  
Chenyang Xu
Keyword(s):  

2008 ◽  
Vol 144 (3) ◽  
pp. 721-733 ◽  
Author(s):  
Olivier Serman

AbstractWe prove that, given a smooth projective curve C of genus g≥2, the forgetful morphism $\mathcal {M}_{\mathbf {O}_r} \longrightarrow \mathcal {M}_{\mathbf {GL}_r}$ (respectively $\mathcal M_{\mathbf {Sp}_{2r}}\longrightarrow \mathcal M_{\mathbf {GL}_{2r}}$) from the moduli space of orthogonal (respectively symplectic) bundles to the moduli space of all vector bundles over C is an embedding. Our proof relies on an explicit description of a set of generators for the polynomial invariants on the representation space of a quiver under the action of a product of classical groups.


Author(s):  
Shinobu Hosono ◽  
Bong H Lian ◽  
Shing-Tung Yau

Abstract We continue our study on the hypergeometric system $E(3,6)$ that describes period integrals of the double cover family of K3 surfaces. Near certain special boundary points in the moduli space of the K3 surfaces, we construct the local solutions and determine the so-called mirror maps expressing them in terms of genus 2 theta functions. These mirror maps are the K3 analogues of the elliptic $\lambda $-function. We find that there are two nonisomorphic definitions of the lambda functions corresponding to a flip in the moduli space. We also discuss mirror symmetry for the double cover K3 surfaces and their higher dimensional generalizations. A follow-up paper will describe more details of the latter.


2008 ◽  
Vol 19 (07) ◽  
pp. 777-799 ◽  
Author(s):  
L. BRAMBILA-PAZ

Let X be a general smooth projective algebraic curve of genus g ≥ 2 over ℂ. We prove that the moduli space G(α:n,d,k) of α-stable coherent systems of type (n,d,k) over X is empty if k > n and the Brill–Noether number β := β(n,d,n + 1) = β(1,d,n + 1) = g - (n + 1)(n - d + g) < 0. Moreover, if 0 ≤ β < g or β = g, n ∤g and for some α > 0, G(α : n,d,k) ≠ ∅ then G(α : n,d,k) ≠ ∅ for all α > 0 and G(α : n,d,k) = G(α′ : n,d,k) for all α,α′ > 0 and the generic element is generated. In particular, G(α : n,d,n + 1) ≠ ∅ if 0 ≤ β ≤ g and α > 0. Moreover, if β > 0 G(α : n,d,n + 1) is smooth and irreducible of dimension β(1,d,n + 1). We define a dual span of a generically generated coherent system. We assume d < g + n1≤ g + n2and prove that for all α > 0, G(α : n1,d, n1+ n2) ≠ ∅ if and only if G(α : n2,d, n1+ n2) ≠ ∅. For g = 2, we describe G(α : 2,d,k) for k > n.


2018 ◽  
Vol 34 ◽  
pp. 125-136 ◽  
Author(s):  
Mao-Ting Chien ◽  
Hiroshi Nakazato

Helton and Vinnikov proved that every hyperbolic ternary form admits a symmetric derminantal representation via Riemann theta functions. In the case the algebraic curve of the hyperbolic ternary form is elliptic, the determinantal representation of the ternary form is formulated by using Weierstrass $\wp$-functions in place of Riemann theta functions. An example of this approach is given.


Sign in / Sign up

Export Citation Format

Share Document