The stability of an incompressible electrically conducting fluid rotating about an axis when current flows parallel to the axis

Mathematika ◽  
1954 ◽  
Vol 1 (1) ◽  
pp. 45-50 ◽  
Author(s):  
D. H. Michael
Author(s):  
P-J Cheng

This article considers the stability of a thin electrically conducting fluid film flowing down the outer surface of a long vertical cylinder in the presence of an applied magnetic field. Using the long-wave perturbation method to solve the generalized non-linear kinematic equations with free film interface, the normal mode approach is first used to compute the linear stability solution. The method of multiple scales is then used to obtain the weak non-linear dynamics. The results indicate that both subcritical instability and supercritical stability conditions are possible. The degree of instability in the film flow is intensified by the lateral curvature of the cylinder. The results also show that increasing the strength of the magnetic field tends to enhance the stability.


Author(s):  
P. H. Roberts

AbstractThe theoretical studies of Chandrasekhar on the stability of Couette flow in a viscous, electrically conducting, fluid in the presence of a uniform axial magnetic field are extended to include cases of finite gap width between the cylinders, and cases in which the conductivity of the walls of the containing cylinders is finite. In addition, the non-axisymmetric modes of instability are discussed, and the results of numerical computations are presented.


The stability under small disturbances is investigated of the two-dimensional laminar motion of an electrically conducting fluid under a transverse magnetic field. It is found that the dominating factor is the change in shape of the undisturbed velocity profile caused by the magnetic field, which depends only on the Hartmann number M . Curves of wave number against Reynolds number for neutral stability are calculated for a range of values of M ; for large values of M the calculations are similar to those which determine the stability of ordinary boundary-layer flow. The critical Reynolds number is found to rise very rapidly with increasing M , so that a transverse magnetic field has a powerful stabilizing influence on this type of flow.


2014 ◽  
Vol 92 (11) ◽  
pp. 1387-1396 ◽  
Author(s):  
J.C. Umavathi ◽  
A.J. Chamkha

In this study, the effects of viscous and Ohmic dissipation in steady, laminar, mixed, convection heat transfer for an electrically conducting fluid flowing through a vertical channel is investigated in both aiding and opposing buoyancy situations. The plates exchange heat with an external fluid. Both conditions of equal and different reference temperatures of the external fluid are considered. First, the simpler cases of either negligible Brinkman number or negligible Grashof number are addressed with the help of analytical solutions. The combined effects of buoyancy forces and viscous dissipation are analyzed using a perturbation series method valid for small values of the perturbation parameter. To relax the conditions on the perturbation parameter, the governing equations are also evaluated numerically by a shooting technique that uses the classical explicit Runge–Kutta method of four slopes as an integration scheme and the Newton–Raphson method as a correction scheme. In the examined cases of velocity and temperature fields, the Nusselt numbers at both the walls and the average velocity are explored. It is found that the velocity profiles for an open circuit (E > 0 or E < 0) lie in between the short circuit (E = 0). The graphical results illustrating the effects of various parameters on the flow as well as the average velocity and Nusselt numbers are presented for open and short circuits. In the absence of electric field load parameter and Hartmann number, the results agree with Zanchini (Int. J. Heat Mass Transfer, 41, 3949 (1998)). Further, the analytical and numerical solutions agree very well for small values of the perturbation parameter.


Sign in / Sign up

Export Citation Format

Share Document