scholarly journals Eigenvalue enclosures and exclosures for non-self-adjoint problems in hydrodynamics

2010 ◽  
Vol 13 ◽  
pp. 65-81 ◽  
Author(s):  
B. Malcolm Brown ◽  
Matthias Langer ◽  
Marco Marletta ◽  
Christiane Tretter ◽  
Markus Wagenhofer

AbstractIn this paper we present computer-assisted proofs of a number of results in theoretical fluid dynamics and in quantum mechanics. An algorithm based on interval arithmetic yields provably correct eigenvalue enclosures and exclosures for non-self-adjoint boundary eigenvalue problems, the eigenvalues of which are highly sensitive to perturbations. We apply the algorithm to: the Orr–Sommerfeld equation with Poiseuille profile to prove the existence of an eigenvalue in the classically unstable region for Reynolds numberR=5772.221818; the Orr–Sommerfeld equation with Couette profile to prove upper bounds for the imaginary parts of all eigenvalues for fixedRand wave numberα; the problem of natural oscillations of an incompressible inviscid fluid in the neighbourhood of an elliptical flow to obtain information about the unstable part of the spectrum off the imaginary axis; Squire’s problem from hydrodynamics; and resonances of one-dimensional Schrödinger operators.

2019 ◽  
Vol 14 (1) ◽  
pp. 52-58 ◽  
Author(s):  
A.D. Nizamova ◽  
V.N. Kireev ◽  
S.F. Urmancheev

The flow of a viscous model fluid in a flat channel with a non-uniform temperature field is considered. The problem of the stability of a thermoviscous fluid is solved on the basis of the derived generalized Orr-Sommerfeld equation by the spectral decomposition method in Chebyshev polynomials. The effect of taking into account the linear and exponential dependences of the fluid viscosity on temperature on the spectral characteristics of the hydrodynamic stability equation for an incompressible fluid in a flat channel with given different wall temperatures is investigated. Analytically obtained profiles of the flow rate of a thermovisible fluid. The spectral pictures of the eigenvalues of the generalized Orr-Sommerfeld equation are constructed. It is shown that the structure of the spectra largely depends on the properties of the liquid, which are determined by the viscosity functional dependence index. It has been established that for small values of the thermoviscosity parameter the spectrum compares the spectrum for isothermal fluid flow, however, as it increases, the number of eigenvalues and their density increase, that is, there are more points at which the problem has a nontrivial solution. The stability of the flow of a thermoviscous fluid depends on the presence of an eigenvalue with a positive imaginary part among the entire set of eigenvalues found with fixed Reynolds number and wavenumber parameters. It is shown that with a fixed Reynolds number and a wave number with an increase in the thermoviscosity parameter, the flow becomes unstable. The spectral characteristics determine the structure of the eigenfunctions and the critical parameters of the flow of a thermally viscous fluid. The eigenfunctions constructed in the subsequent works show the behavior of transverse-velocity perturbations, their possible growth or decay over time.


2007 ◽  
Vol 62 (1-2) ◽  
pp. 21-28
Author(s):  
Hilmi Demiray

In this work, treating an artery as a prestressed thin-walled elastic tube and the blood as an inviscid fluid, the interactions of two nonlinear waves propagating in opposite directions are studied in the longwave approximation by use of the extended PLK (Poincaré-Lighthill-Kuo) perturbation method. The results show that up to O(k3), where k is the wave number, the head-on collision of two solitary waves is elastic and the solitary waves preserve their original properties after the interaction. The leading-order analytical phase shifts and the trajectories of two solitons after the collision are derived explicitly.


2018 ◽  
Vol 26 (01) ◽  
pp. 1750030 ◽  
Author(s):  
V. Hernández ◽  
J. Estrada ◽  
E. Moreno ◽  
S. Rodríguez ◽  
A. Mansur

Ultrasonic guided waves propagating along large structures have great potential as a nondestructive evaluation method. In this context, it is very important to obtain the dispersion curves, which depend on the cross-section of the structure. In this paper, we compute dispersion curves along infinite isotropic plate-like structures using the semi-analytical method (SAFEM) with an isogeometric approach based on B-spline functions. The SAFEM method leads to a family of generalized eigenvalue problems depending on the wave number. For a prescribed wave number, the solution of this problem consists of the nodal displacement vector and the frequency of the guided wave. In this work, the results obtained with B-splines shape functions are compared to the numerical SAFEM solution with quadratic Lagrange shape functions. Advantages of the isogeometric approach are highlighted and include the smoothness of the displacement field components and the computational cost of solving the corresponding generalized eigenvalue problems. Finally, we investigate the convergence of Lagrange and B-spline approaches when the number of degrees of freedom grows. The study shows that cubic B-spline functions provide the best solution with the smallest relative errors for a given number of degrees of freedom.


1962 ◽  
Vol 13 (3) ◽  
pp. 427-432 ◽  
Author(s):  
John W. Miles

The inviscid Orr-Sommerfeld equation for ϕ(y) in y > 0 subject to a null condition as y → ∞ is attacked by considering separately the intervals (0, y1) and (y1, ∞), such that the solution in (0, y1) can be expanded in powers of the wave-number (following Heisenberg) and the solution of (y1, ∞) regarded as real and non-singular. Complementary variational principles for the latter solution are determined to bound an appropriate parameter from above and below. It also is shown how the original differential equation may be transformed to a Riccati equation in such a way as to facilitate both the Heisenberg expansion of the solution in (0, y1) and numerical integration in (y1, ∞). These methods are applied to a velocity profile that is linear in (0, y1) and asymptotically logarithmic as y → ∞, and it is found that the mean of the two variational approximations is in excellent agreement with the results of numerical integration of the Riccati equation.


1983 ◽  
Vol 50 (2) ◽  
pp. 405-414 ◽  
Author(s):  
D. B. Bogy ◽  
S. M. Gracewski

The reflection coefficient is derived for an isotropic, homogeneous elastic layer of arbitrary thickness that is perfectly bonded to such an elastic half-space of a different material for the case when plane waves are incident from an inviscid fluid onto the layered solid. The derived function is studied analytically by considering several limiting cases of geometry and materials to recover previously known results. Approximate reflection coefficents are then derived using various plate models for the layer to obtain simpler expressions that are useful for small values of σd, where σ is the wave number and d is the layer thickness. Numerical results based on all the models for the propagation of interface waves localized near the fluid-solid boundary are obtained and compared. These results are also compared with some previously published experimental measurements.


2011 ◽  
Vol 9 ◽  
pp. 85-89 ◽  
Author(s):  
N. Burschäpers ◽  
S. Fiege ◽  
R. Schuhmann ◽  
A. Walther

Abstract. We analyze the sensitivity of dielectric waveguides with respect to design parameters such as permittivity values or simple geometric dependencies. Based on a discretization using the Finite Integration Technique the eigenvalue problem for the wave number is shown to be non-Hermitian with possibly complex solutions even in the lossless case. Nevertheless, the sensitivity can be obtained with negligible numerical effort. Numerical examples demonstrate the validity of the approach.


Sign in / Sign up

Export Citation Format

Share Document