scholarly journals A note on magnitude bounds for the mask coefficients of the interpolatory Dubuc–Deslauriers subdivision scheme

2014 ◽  
Vol 17 (1) ◽  
pp. 226-232
Author(s):  
H. E. Bez ◽  
N. Bez

AbstractWe analyse the mask associated with the $2n$-point interpolatory Dubuc–Deslauriers subdivision scheme $S_{a^{[n]}}$. Sharp bounds are presented for the magnitude of the coefficients $a^{[n]}_{2i-1}$ of the mask. For scales $i \in [1,\sqrt{n}]$ it is shown that $|a^{[n]}_{2i-1}|$ is comparable to $i^{-1}$, and for larger power scales, exponentially decaying bounds are obtained. Using our bounds, we may precisely analyse the summability of the mask as a function of $n$ by identifying which coefficients of the mask contribute to the essential behaviour in $n$, recovering and refining the recent result of Deng–Hormann–Zhang that the operator norm of $S_{a^{[n]}}$ on $\ell ^\infty $ grows logarithmically in $n$.

2020 ◽  
Vol 2020 (759) ◽  
pp. 291-304
Author(s):  
Christopher Schafhauser

AbstractA trace on a {\mathrm{C}^{*}}-algebra is amenable (resp. quasidiagonal) if it admits a net of completely positive, contractive maps into matrix algebras which approximately preserve the trace and are approximately multiplicative in the 2-norm (resp. operator norm). Using that the double commutant of a nuclear {\mathrm{C}^{*}}-algebra is hyperfinite, it is easy to see that traces on nuclear {\mathrm{C}^{*}}-algebras are amenable. A recent result of Tikuisis, White, and Winter shows that faithful traces on separable, nuclear {\mathrm{C}^{*}}-algebras in the UCT class are quasidiagonal. We give a new proof of this result using the extension theory of {\mathrm{C}^{*}}-algebras and, in particular, using a version of the Weyl–von Neumann Theorem due to Elliott and Kucerovsky.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Zequn Wang ◽  
Mingquan Wei ◽  
Qianjun He ◽  
Dunyan Yan

In this paper, we obtain the sharp bound for fractional conjugate Hardy operator on higher-dimensional product spaces from L1ℝn1×⋯×ℝnm to the space wLQℝn1×⋯×ℝnm and Lpℝn1×⋯×ℝnm to the space Lqℝn1×⋯×ℝnm. More generally, the operator norm of the fractional Hardy operator on higher-dimensional product spaces from LPℝn1×⋯×ℝnm to LQIℝn1×⋯×ℝnm is obtained.


2015 ◽  
Vol 62 (5) ◽  
pp. 1-40 ◽  
Author(s):  
Seth Pettie
Keyword(s):  

Author(s):  
Judit Abardia-Evéquoz ◽  
Andreas Bernig

AbstractWe show the existence of additive kinematic formulas for general flag area measures, which generalizes a recent result by Wannerer. Building on previous work by the second named author, we introduce an algebraic framework to compute these formulas explicitly. This is carried out in detail in the case of the incomplete flag manifold consisting of all $$(p+1)$$ ( p + 1 ) -planes containing a unit vector.


2020 ◽  
Vol 70 (4) ◽  
pp. 849-862
Author(s):  
Shagun Banga ◽  
S. Sivaprasad Kumar

AbstractIn this paper, we use the novel idea of incorporating the recently derived formula for the fourth coefficient of Carathéodory functions, in place of the routine triangle inequality to achieve the sharp bounds of the Hankel determinants H3(1) and H2(3) for the well known class 𝓢𝓛* of starlike functions associated with the right lemniscate of Bernoulli. Apart from that the sharp bound of the Zalcman functional: $\begin{array}{} |a_3^2-a_5| \end{array}$ for the class 𝓢𝓛* is also estimated. Further, a couple of interesting results of 𝓢𝓛* are also discussed.


2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Tom Gur ◽  
Yang P. Liu ◽  
Ron D. Rothblum

AbstractInteractive proofs of proximity allow a sublinear-time verifier to check that a given input is close to the language, using a small amount of communication with a powerful (but untrusted) prover. In this work, we consider two natural minimally interactive variants of such proofs systems, in which the prover only sends a single message, referred to as the proof. The first variant, known as -proofs of Proximity (), is fully non-interactive, meaning that the proof is a function of the input only. The second variant, known as -proofs of Proximity (), allows the proof to additionally depend on the verifier's (entire) random string. The complexity of both s and s is the total number of bits that the verifier observes—namely, the sum of the proof length and query complexity. Our main result is an exponential separation between the power of s and s. Specifically, we exhibit an explicit and natural property $$\Pi$$ Π that admits an with complexity $$O(\log n)$$ O ( log n ) , whereas any for $$\Pi$$ Π has complexity $$\tilde{\Omega}(n^{1/4})$$ Ω ~ ( n 1 / 4 ) , where n denotes the length of the input in bits. Our lower bound also yields an alternate proof, which is more general and arguably much simpler, for a recent result of Fischer et al. (ITCS, 2014). Also, Aaronson (Quantum Information & Computation 2012) has shown a $$\Omega(n^{1/6})$$ Ω ( n 1 / 6 ) lower bound for the same property $$\Pi$$ Π .Lastly, we also consider the notion of oblivious proofs of proximity, in which the verifier's queries are oblivious to the proof. In this setting, we show that s can only be quadratically stronger than s. As an application of this result, we show an exponential separation between the power of public and private coin for oblivious interactive proofs of proximity.


2020 ◽  
Vol 53 (1) ◽  
pp. 27-37
Author(s):  
Sa’adatul Fitri ◽  
Derek K. Thomas ◽  
Ratno Bagus Edy Wibowo ◽  

AbstractLet f be analytic in {\mathbb{D}}=\{z:|z\mathrm{|\hspace{0.17em}\lt \hspace{0.17em}1\}} with f(z)=z+{\sum }_{n\mathrm{=2}}^{\infty }{a}_{n}{z}^{n}, and for α ≥ 0 and 0 < λ ≤ 1, let { {\mathcal B} }_{1}(\alpha ,\lambda ) denote the subclass of Bazilevič functions satisfying \left|f^{\prime} (z){\left(\frac{z}{f(z)}\right)}^{1-\alpha }-1\right|\lt \lambda for 0 < λ ≤ 1. We give sharp bounds for various coefficient problems when f\in { {\mathcal B} }_{1}(\alpha ,\lambda ), thus extending recent work in the case λ = 1.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 372
Author(s):  
Nishu Gupta ◽  
Mihai Postolache ◽  
Ashish Nandal ◽  
Renu Chugh

The aim of this paper is to formulate and analyze a cyclic iterative algorithm in real Hilbert spaces which converges strongly to a common solution of fixed point problem and multiple-sets split common fixed point problem involving demicontractive operators without prior knowledge of operator norm. Significance and range of applicability of our algorithm has been shown by solving the problem of multiple-sets split common null point, multiple-sets split feasibility, multiple-sets split variational inequality, multiple-sets split equilibrium and multiple-sets split monotone variational inclusion.


Sign in / Sign up

Export Citation Format

Share Document