scholarly journals Designing of an Assembly Line based on Reliability Approach

Author(s):  
Debdip KHAN ◽  
Dilip ROY

The problem of Assembly Line Balancing is to assign a set of tasks to an ordered sequence of workstations without violating the precedence constraints. The efficiency of the line will increase when tasks are more evenly distributed. In general, the efficiency measure(s) should be optimized subject to cycle time restriction and precedence constraints. Under the deterministic setup, efficiency of the system can be measured in various ways. Research works, reported so far, mainly deal with balancing loss as an inverse measure of efficiency. As a result, in earlier works balancing loss has been minimized subject to precedence constraints. In case the work elements are best described in terms of stochastic time, the entire problem has to be addressed with a different measure of efficiency. Expected variance of the idle times of workstations can be viewed as an inverse measure of stability of the system. A more appropriate and direct measure could be the reliability of the system such that each workstation adheres to assigned cycle time with high chance. The present work defines the reliability of the assembly line in terms of cycle time and distribution of the tasks times and offers an optimization formulation for the problem under precedence constraints. For demonstration purpose, one well known example in the literature has been addressed under stochastic setup.

2014 ◽  
Vol 13 (02) ◽  
pp. 113-131 ◽  
Author(s):  
P. Sivasankaran ◽  
P. Shahabudeen

Balancing assembly line in a mass production system plays a vital role to improve the productivity of a manufacturing system. In this paper, a single model assembly line balancing problem (SMALBP) is considered. The objective of this problem is to group the tasks in the assembly network into a minimum number of workstations for a given cycle time such that the balancing efficiency is maximized. This problem comes under combinatorial category. So, it is essential to develop efficient heuristic to find the near optimal solution of the problem in less time. In this paper, an attempt has been made to design four different genetic algorithm (GA)-based heuristics, and analyze them to select the best amongst them. The analysis has been carried out using a complete factorial experiment with three factors, viz. problem size, cycle time, and algorithm, and the results are reported.


2012 ◽  
Vol 502 ◽  
pp. 19-24 ◽  
Author(s):  
J. Ríos ◽  
F. Mas ◽  
J.L. Menéndez

Assembly Line Balancing (ALB) comprises ordering of tasks among workstations to satisfy precedence constraints and objective functions. Due to the specific features of an aircraft, such approach is not fully suitable for the case of an aircraft Final Assembly Line (FAL). Where, the number of workstations relates to technological criteria rather than to a calculation aiming to minimize a specific parameter. Workload smoothing is addressed once the FAL configuration is defined. To improve current practices, a methodological approach was taken to address the conceptual modeling of an aircraft assembly line.


2020 ◽  
Vol 10 (11) ◽  
pp. 3932
Author(s):  
László Nagy ◽  
Tamás Ruppert ◽  
János Abonyi

Assembly line balancing improves the efficiency of production systems by the optimal assignment of tasks to operators. The optimisation of this assignment requires models that provide information about the activity times, constraints and costs of the assignments. A multilayer network-based representation of the assembly line-balancing problem is proposed, in which the layers of the network represent the skills of the operators, the tools required for their activities and the precedence constraints of their activities. The activity–operator network layer is designed by a multi-objective optimisation algorithm in which the training and equipment costs as well as the precedence of the activities are also taken into account. As these costs are difficult to evaluate, the analytic hierarchy process (AHP) technique is used to quantify the importance of the criteria. The optimisation problem is solved by a multi-level simulated annealing algorithm (SA) that efficiently handles the precedence constraints. The efficiency of the method is demonstrated by a case study from wire harness manufacturing.


2013 ◽  
Vol 816-817 ◽  
pp. 1169-1173
Author(s):  
Usman Attique ◽  
Abdul Ghafoor ◽  
Riaz Ahmed ◽  
Shahid Ikramullah

Various exact and heuristic methods have been proposed for assembly line balancing problem (ALBP) but unequal multiple operators have not been considered much. In this paper we present a novel approach of assembly line balancing Type-2 with unequal multiple operators by using an already developed code in Matlab (Tomlab modeling platform). The adopted approach can be applied at line balancing problems ranging from few to hundreds of work elements to achieve minimum cycle time with very less computational effort.


Author(s):  
Konstantinos N. Genikomsakis ◽  
◽  
Vassilios D. Tourassis

Assembly Line Balancing (ALB) aims at optimally assigning the work elements required to assemble a product to an ordered sequence of workstations, while satisfying precedence constraints. Notwithstanding the advances and developments in ALB over the years, recent and thorough surveys on this field reveal that only a small percentage of companies employ ALB procedures to configure their assembly lines. This paradox may be attributed, to some extent, to the fact that ALB is addressed mostly under ideal conditions. Despite the time variability inherent in manufacturing tasks, there is a strong research trend towards designing and implementing algorithms that consider ALB on a deterministic basis and focus on the optimality of the proposed task assignments according to existing ALB performance measures. In this paper, the need to assess the performance of the proposed solutions of various algorithms in the literature is corroborated through simulation experiments on a benchmark ALB problem under more realistic conditions. A novel ALB index, namely the Effective Cycle Time, ECT, is proposed to assess the quality of alternative assembly line configurations in paced assembly lines operating under task times variations.


2012 ◽  
Vol 576 ◽  
pp. 700-704 ◽  
Author(s):  
Hartini Mustafa ◽  
Ahmad Razlan Yusoff ◽  
M. Yusoff Ismail

Assembly line balancing is assumed to have fixed task within specified task time during the initial stage of the mass production. The problem of current case study of this assembly line was the production line cannot meet the expected output plan with imbalance station cycle time. In this paper, productivity study and line balancing is applied to improve production line of GGMG & CALICO. The desired cycle time defined using the Standard Time Data (STD) which required the person to perform assign task till completion by defining the performance rating of person. The proposed solution proved by the implementation analysis conducted in the research. The results showed that the productivity of production line which is tremendously increased within 50% after implementation. There are six factors identified during the study which are bottleneck stations, workpiece flow, line layout, ergonomic, resource assignment and buffer allocation.


2015 ◽  
Vol 761 ◽  
pp. 104-108
Author(s):  
Adi Saptari ◽  
Jia Xin Leau ◽  
M. Nor Akramin

In Line Balancing principles, the total workload in the assembly process is divided as evenly as possible among the workstations, without violating the sequences and relations in the assembly operations. Line balancing is important in an assembly system as it balances the line and increases the efficiency, as well as the productivity of a system. A case study was conducted in the assembly line of an electrical accessories manufacturer in Malaysia. The cycle time for each station was recorded, and the standard cycle time was estimated. The productivity, as well as the efficiency of the current assembly line, were studied. In terms of the productivity, the performance of the current systems was 500 units/worker/day, while the expected productivity was 600 units/worker/day. An assembly line setting was proposed based on the Line Balancing Method; the productivity for the proposed line increased to 671 units/worker/day, or in rough additional increase around 34%.


Informatica ◽  
2020 ◽  
Vol 44 (2) ◽  
Author(s):  
Huong Mai Dinh ◽  
Dung Viet Nguyen ◽  
Long Van Truong ◽  
Thuan Phan Do ◽  
Thao Thanh Phan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document