scholarly journals Electrical pulse stimulation: anin vitroexercise model for the induction of human skeletal muscle cell hypertrophy. A proof-of-concept study

2017 ◽  
Vol 102 (11) ◽  
pp. 1405-1413 ◽  
Author(s):  
Janelle Tarum ◽  
Mattias Folkesson ◽  
Philip J. Atherton ◽  
Fawzi Kadi
PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0247377
Author(s):  
Vid Jan ◽  
Katarina Miš ◽  
Natasa Nikolic ◽  
Klemen Dolinar ◽  
Metka Petrič ◽  
...  

Denervation reduces the abundance of Na+,K+-ATPase (NKA) in skeletal muscle, while reinnervation increases it. Primary human skeletal muscle cells, the most widely used model to study human skeletal muscle in vitro, are usually cultured as myoblasts or myotubes without neurons and typically do not contract spontaneously, which might affect their ability to express and regulate NKA. We determined how differentiation, de novo innervation, and electrical pulse stimulation affect expression of NKA (α and β) subunits and NKA regulators FXYD1 (phospholemman) and FXYD5 (dysadherin). Differentiation of myoblasts into myotubes under low serum conditions increased expression of myogenic markers CD56 (NCAM1), desmin, myosin heavy chains, dihydropyridine receptor subunit α1S, and SERCA2 as well as NKAα2 and FXYD1, while it decreased expression of FXYD5 mRNA. Myotubes, which were innervated de novo by motor neurons in co-culture with the embryonic rat spinal cord explants, started to contract spontaneously within 7–10 days. A short-term co-culture (10–11 days) promoted mRNA expression of myokines, such as IL-6, IL-7, IL-8, and IL-15, but did not affect mRNA expression of NKA, FXYDs, or myokines, such as musclin, cathepsin B, meteorin-like protein, or SPARC. A long-term co-culture (21 days) increased the protein abundance of NKAα1, NKAα2, FXYD1, and phospho-FXYD1Ser68 without attendant changes in mRNA levels. Suppression of neuromuscular transmission with α-bungarotoxin or tubocurarine for 24 h did not alter NKA or FXYD mRNA expression. Electrical pulse stimulation (48 h) of non-innervated myotubes promoted mRNA expression of NKAβ2, NKAβ3, FXYD1, and FXYD5. In conclusion, low serum concentration promotes NKAα2 and FXYD1 expression, while de novo innervation is not essential for upregulation of NKAα2 and FXYD1 mRNA in cultured myotubes. Finally, although innervation and EPS both stimulate contractions of myotubes, they exert distinct effects on the expression of NKA and FXYDs.


2007 ◽  
Vol 137 (2_suppl) ◽  
pp. P152-P152
Author(s):  
Jens Stern-Straeter ◽  
Frank Riedel ◽  
Gregor Bran ◽  
Karl Hoermann ◽  
Ulrich R Goessler

2015 ◽  
Vol 47 ◽  
pp. 127
Author(s):  
Sanghee Park ◽  
Taylor Beasley ◽  
Kristen Turner ◽  
Donghai Zheng ◽  
Chuck Tanner ◽  
...  

1993 ◽  
Vol 106 (3) ◽  
pp. 749-759 ◽  
Author(s):  
P.F. van der Ven ◽  
G. Schaart ◽  
H.J. Croes ◽  
P.H. Jap ◽  
L.A. Ginsel ◽  
...  

Differentiating human skeletal muscle cell cultures were used to study the association of titin with other sarcomeric and cytoskeletal proteins during myofibrillogenesis. Several developmental stages of these cultures were double stained with antibodies to titin in combination with antibodies to alpha-actin, alpha-actinin, myosin heavy chain (MHC), nebulin, desmin, and beta-tubulin. The first indications of titin expression were found in postmitotic mononuclear myoblasts where it is located in a random, punctate fashion. At the light microscope level no evidence was found for an association of these titin spots with any of the other proteins studied, with the exception of MHC, which colocalized with titin in a small minority of the titin expressing cells. Subsequently the titin spots were found to be linked to longitudinally oriented stress fiber-like structures (SFLS), containing alpha-actinin and sarcomeric alpha-actin, but not MHC, nebulin or desmin. Upon further maturation titin antibodies seemed to stain SFLS in a rather homogeneous fashion together with MHC, alpha-actin and alpha-actinin. Thereafter a more periodic localization of titin, MHC, alpha-actin and alpha-actinin on SFLS became obvious. From these structures myofibrils developed as a result of further differentiation. Initially only short stretches with a striated titin, MHC, F-actin and alpha-actinin organization were found. Nebulin was integrated in these young myofibrils at a later developmental stage. Desmin was not found to be incorporated in these myofibrils until complete alignment of the sarcomeres in mature myotubes had occurred. At the ultrastructural level titin antibodies recognized aggregates that were associated with intermediate filaments (IF) in postmitotic mononuclear myoblasts. At a later maturational stage, prior to the development of cross-striated myofibrils, the IF-associated titin aggregates were found in close association with subsarcolemmally located SFLS. We conclude that IF and SFLS play an important role in the very early stages of in vitro human myofibrillogenesis. On the basis of our results we assume that titin aggregates are targeted to SFLS through IF. The association of titin with SFLS might be crucial for the unwinding of titin necessary for the assembly of sarcomeres and the first association of titin with other sarcomeric proteins.


Sign in / Sign up

Export Citation Format

Share Document