Influence of the mode of heating on cerebral blood flow, non‐invasive intracranial pressure and thermal tolerance in humans

2021 ◽  
Vol 599 (7) ◽  
pp. 1977-1996 ◽  
Author(s):  
Travis D. Gibbons ◽  
Philip N. Ainslie ◽  
Kate N. Thomas ◽  
Luke C. Wilson ◽  
Ashley P. Akerman ◽  
...  
2020 ◽  
Author(s):  
Jonas B Fischer ◽  
Ameer Ghouse ◽  
Susanna Tagliabue ◽  
Federica Maruccia ◽  
Anna Rey-Perez ◽  
...  

Intracranial pressure (ICP) is an important parameter to monitor in several neuropathologies. However, because current clinically accepted methods are invasive, its monitoring is limited to patients in critical conditions. On the other side, there are other less critical conditions where ICP monitoring could still be useful, thus there is a need to develop non-invasive methods. We propose a new method to estimate ICP based on the analysis of the non-invasive measurement of pulsatile, microvascular cerebral blood flow with diffuse correlation spectroscopy. This is achieved by training a recurrent neural network using only the cerebral blood flow as the input. The method is validated using a 50% split sample method using the data from a proof-of-concept study. The study involved a population of infants (n=6) with external hydrocephalus (initially diagnosed as benign enlargement of subarachnoid spaces) as well as a population of adults (n=6) suffering from traumatic brain injury. The algorithm was applied to each cohort individually to obtain a model and an ICP estimate. In both diverse cohorts, the non-invasive estimation of ICP was achieved with an accuracy less than <4 mmHg and a negligible small bias. Furthermore, we have achieved a good correlation (Pearson's correlation coefficient >0.9) and good concordance (Lin's concordance correlation coefficient >0.9) in comparison to standard clinical, invasive ICP monitoring. This preliminary work paves the way for further investigations of this tool for the non-invasive, bed-side assessment of ICP.


1989 ◽  
Vol 256 (3) ◽  
pp. H779-H788
Author(s):  
R. C. Koehler ◽  
J. E. Backofen ◽  
R. W. McPherson ◽  
M. D. Jones ◽  
M. C. Rogers ◽  
...  

We determined how alterations in systemic hemodynamics, characteristic of the Cushing response, are related to changes in cerebral blood flow (CBF), cerebral metabolic rate of O2 (CMRO2), and brain electrical conductive function, as assessed by somatosensory-evoked potentials (SEP) and brain stem auditory-evoked responses (BAER). In three groups of eight pentobarbital-anesthetized sheep, intracranial pressure was gradually elevated to within 50, 25, or 0 mmHg of base-line mean arterial pressure and then held constant for 40 min by intraventricular infusion of mock cerebrospinal fluid. Microsphere-determined CBF fell when cerebral perfusion pressure was less than 50 mmHg. CMRO2 fell when CBF fell greater than 30-40%. Mean aortic pressure and cardiac output increased when CBF fell greater than 40%, i.e., at approximately the level at which CMRO2 fell. Furthermore, the magnitude of the increase in arterial pressure and cardiac output correlated with the reduction of CMRO2. SEP latency did not increase unless CBF fell greater than 55-65%, corresponding to a 20-30% reduction of CMRO2. Increased latency of BAER wave V was associated with a fall in midbrain blood flow of greater than 65-70%. Thus increase in SEP and BAER latencies required reductions of flow greater than those required to elicit a systemic response. This demonstrates that there is a range of intracranial pressure over which the increase in arterial pressure preserves sufficient CBF to sustain minimal electrical conductive function. The best predictor of the onset and magnitude of the Cushing response in adult sheep is the decrease in CMRO2.


Sign in / Sign up

Export Citation Format

Share Document