scholarly journals Reciprocal inhibition during the tonic stretch reflex in the decerebrate cat.

1978 ◽  
Vol 284 (1) ◽  
pp. 345-369 ◽  
Author(s):  
T C Fu ◽  
H Hultborn ◽  
R Larsson ◽  
A Lundberg
1991 ◽  
Vol 66 (4) ◽  
pp. 1139-1155 ◽  
Author(s):  
T. R. Nichols ◽  
D. Koffler-Smulevitz

1. The role of proprioceptive pathways linking the direct antagonists soleus (S) and tibialis anterior (TA) muscles in governing the mechanical properties of the ankle joint were studied in the decerebrate cat. Actions of these heterogenic pathways were compared with those between S and extensor digitorum longus (EDL), a muscle that also acts at the metatarsophalangeal joint. These neurally mediated interactions between S and either TA or EDL were studied by applying controlled length changes to the isolated tendons of pairs of these muscles and recording the resulting changes in force. The muscles were activated with the use of electrically evoked crossed-extension reflexes, flexion reflexes, and brain stem stimulation. 2. Heterogenic inhibition from TA or EDL onto S was well developed whether S was initially quiescent or activated by a crossed-extension reflex. The inhibition persisted for the duration of the stretch of TA or EDL. During a crossed-extension reflex, TA did not generate background force, but brief stretch reflexes could be obtained. During flexion reflexes, stretch reflexes in S were usually abolished, and heterogenic inhibition from S to TA was weak or absent. 3. The strength of the heterogenic inhibition onto S was dependent on the initial length and activation level of TA and EDL. Changes in flexor length or activation level per se did not alter the background force or strength of the stretch reflex in S. Even taking into account the variation of strength of inhibition with the initial state of the muscle of origin, the strength of the inhibition was stronger from TA to S than the other way around. 4. The contributions of heterogenic inhibition from TA and EDL to S were independent in the sense that these components summed linearly with each other and with the autogenic reflex in S. In addition, the magnitude of the inhibition from TA to S was proportional to the amplitude of stretch for low to intermediate levels of initial force in S. The inhibition appeared to affect the mechanical responses of S essentially as rapidly as the stretch reflex in this muscle. 5. The heterogenic inhibition from TA to S was reduced or abolished by intravenous injections of strychnine but unaffected by injections of picrotoxin or bicuculline. These results, together with the observation that the inhibition sums linearly with the stretch reflex, suggest that the mechanism of this heterogenic inhibition is glycinergic and postsynaptic and, therefore, may include Ia-disynaptic reciprocal inhibition.(ABSTRACT TRUNCATED AT 400 WORDS)


1995 ◽  
Vol 74 (2) ◽  
pp. 849-855 ◽  
Author(s):  
T. Sinkjaer ◽  
J. Nielsen ◽  
E. Toft

1. The purpose of the present study is to investigate how reciprocal inhibition influences the mechanical and electromyographic (EMG) properties of the ankle plantar flexors in humans during a voluntary contraction. 2. At different levels of maintained plantar flexion contractions ranging from 0 to 20 Nm, the size of the soleus EMG stretch reflex and the ankle joint stiffness (ration between the torque increment and the amplitude of the stretch) were measured in response to an imposed dorsiflexion. At matched plantar flexion contraction levels, stretch responses were compared before and after reversible block of the common peroneal nerve (CPN). Stretch responses were also measured during an attempted voluntary fictive dorsiflexion after CPN block. 3. In the preactivated soleus muscles, the phasic EMG response to stretch consisted of two peaks labeled M1 and M2. After CPN block, the M1 short-latency stretch reflex on average increased by 25 +/- 5.7%, mean +/- SD (P < 0.001), and the M2 stretch reflex increased on average by 29 +/- 13.0% (P = 0.002). 4. The total stiffness of the ankle joint during a stretch is the sum of the nonreflex and the reflex mediated stiffness. The total stiffness after CPN block increased on average by 13 +/- 2.7% (P = 0.002) and the estimated reflex stiffness by 33 +/- 6.5% (P < 0.001). 5. When the subjects were asked to make a strong dorsiflexion after CPN block, the soleus stretch reflex was depressed to the extent that the reflex mediated mechanical effect around the ankle joint was abolished.(ABSTRACT TRUNCATED AT 250 WORDS)


1956 ◽  
Vol 185 (3) ◽  
pp. 607-613 ◽  
Author(s):  
Werner P. Koella ◽  
Hiroyuki Nakao ◽  
Robert L. Evans ◽  
Jun Wada

The quantitative interrelation between stretch, tension and position in space was studied in decerebrate cats. The tension produced by the isolated M. triceps brachii was recorded by means of strain gauges. It was found that the tension increment, produced by a particular stretch, increases as the preparation is turned from the prone to the supine position around its longitudinal axis. The proportion between the tensions produced by a series of two or more different stretches, however, stays constant under these conditions. It was shown, furthermore, that the effect of a change in position upon the degree of rigidity—i.e., the difference between the tensions in the prone and in the supine positions—is the greater the greater the initial stretch. A quantitative analysis of the results disclosed that the vestibular factor and the proprioceptive factor are related in a multiplicative manner. These experiments show that the vestibular apparatus and the muscle spindles exert their influence not in an isolated and independent, but a quantitatively interdependent manner. The results of the present work together with the findings of other authors (Granit) give strength to the argument that the vestibular apparatus controls the stretch reflex activity in an indirect manner, i.e., over the ‘by-pass’ of the gamma-efferents.


1979 ◽  
Vol 57 (6) ◽  
pp. 606-614 ◽  
Author(s):  
C. E. Chapman ◽  
W. J. Michalski ◽  
J. J. Séguin

The effects of muscle spindle secondary ending activity on the stretch reflex were studied in unanesthetized decerebrate cats. Activation of secondary endings was accomplished by reducing the muscle temperature. This has been shown to cause a sustained asynchronous discharge from secondary endings. Cooling of the medial gastrocnemius or lateral gastrocnemius–soleus muscles caused an increase in the phasic and tonic components of their stretch reflexes. Cooling of the relaxed medial gastrocnemius muscle caused similar increases in the components of the stretch reflex of the synergistic lateral gastrocnemius–soleus muscle and an increase in its monosynaptic reflex. It was concluded that the facilitatory autogenetic and synergistic effects of muscle cooling on the stretch and monosynaptic reflexes were brought about by activity in group II afferents from muscle spindle secondary endings and could not be ascribed to any other type of muscle receptor. These results support the concept of an excitatory role for the secondary endings of the muscle spindle in the stretch reflex of the decerebrate cat.


2000 ◽  
Vol 83 (2) ◽  
pp. 652-658 ◽  
Author(s):  
David C. Lin ◽  
W. Zev Rymer

A transient perturbation applied to a limb held in a given posture can induce oscillations. To restore the initial posture, the neuromuscular system must provide damping, which is the dissipation of the mechanical energy imparted by such a perturbation. Despite their importance, damping properties of the neuromuscular system have been poorly characterized. Accordingly, this paper describes the damping characteristics of the neuromuscular system interacting with inertial loads. To quantitatively examine damping, we coupled simulated inertial loads to surgically isolated, reflexively active soleus muscles in decerebrate cats. A simulated force impulse was applied to the load, causing a muscle stretch, which elicited a reflex response. The resulting deviation from the initial position gave rise to oscillations, which decayed progressively. Damping provided by the neuromuscular system was then calculated from the load kinetics. To help interpret our experimental results, we compared our kinetic measurements with those of an analogous linear viscoelastic system and found that the experimental damping properties differed in two respects. First, the amount of damping was greater for large oscillation amplitudes than for small (damping is independent of amplitude in a linear system). Second, plots of force against length during the induced movements showed that damping was greater for shortening than lengthening movements, reflecting greater effective viscosity during shortening. This again is different from the behavior of a linear system, in which damping effects would be symmetrical. This asymmetric and nonlinear damping behavior appears to be related to both the intrinsic nonlinear mechanical properties of the soleus muscle and to stretch reflex properties. The muscle nonlinearities include a change in muscle force-generating capacity induced by forced lengthening, akin to muscle yield, and the nonlinear force-velocity property of muscle, which is different for lengthening versus shortening. Stretch reflex responses are also known to be asymmetric and amplitude dependent. The finding that damping is greater for larger amplitude motion represents a form of automatic gain adjustment to a larger perturbation. In contrast, because of reduced damping at small amplitudes, smaller oscillations would tend to persist, perhaps contributing to normal or “physiological” tremor. This lack of damping for small amplitudes may represent an acceptable compromise for postural regulation in that there is substantial damping for larger movements, where energy dissipation is more critical. Finally, the directional asymmetry in energy dissipation provided by muscle and reflex properties must be reflected in the neural mechanisms for a stable posture.


2003 ◽  
Vol 90 (3) ◽  
pp. 1537-1546 ◽  
Author(s):  
Clotilde M.J.I. Huyghues-Despointes ◽  
Timothy C. Cope ◽  
T. Richard Nichols

The manner in which activation levels influence intrinsic muscular properties and contributions of the stretch reflex were studied in homogeneous soleus (SOL) and heterogeneous gastrocnemius (G) muscles in the decerebrate cat. Intrinsic mechanical properties were represented by the initial stiffness of the muscle, measured prior to reflex action, and by the tendency of the muscle to yield during stretch in the absence of the stretch reflex. Stiffness regulation by the stretch reflex was evaluated by measuring the extent to which reflex action reduces yielding and the extent to which stiffness depends on background force. Intrinsic mechanical properties were measured in muscles deprived of effective autogenic reflexes using the method of muscular reinnervation. Reinnervated muscles were recruited to force levels comparable to those achieved during natural locomotion. As force declined during crossed-extension reflexes in reinnervated and intact muscles, initial stiffness declined according to similar convex trajectories. The data did not support the hypothesis that, for a given force level, initial stiffness is greatest in populations of predominantly type I motor units. Incremental stiffness (Δ f/Δ l) of both G and SOL increased in the presence of the stretch reflex. Yielding of SOL (ratio of incremental to initial stiffness) substantially decreased in the presence of the stretch reflex over the full range of forces. In reflexive G, yielding significantly decreased for low to intermediate forces, whereas at higher forces, yielding was similar irrespective of the presence or absence of the stretch reflex. The stretch reflex regulates stiffness in both homogeneous and heterogeneous muscles.


Sign in / Sign up

Export Citation Format

Share Document