scholarly journals Remodelling of action potential and intracellular calcium cycling dynamics during subacute myocardial infarction promotes ventricular arrhythmias in Langendorff-perfused rabbit hearts

2007 ◽  
Vol 580 (3) ◽  
pp. 895-906 ◽  
Author(s):  
Chung-Chuan Chou ◽  
Shengmei Zhou ◽  
Hideki Hayashi ◽  
Motoki Nihei ◽  
Yen-Bin Liu ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Na Zhao ◽  
Qince Li ◽  
Haibo Sui ◽  
Henggui Zhang

Atrial fibrillation is a common cardiac arrhythmia with an increasing incidence rate. Particularly for the aging population, understanding the underlying mechanisms of atrial arrhythmia is important in designing clinical treatment. Recently, experiments have shown that atrial arrhythmia is associated with oxidative stress. In this study, an atrial cell model including oxidative-dependent Ca2+/calmodulin- (CaM-) dependent protein kinase II (CaMKII) activation was developed to explore the intrinsic mechanisms of atrial arrhythmia induced by oxidative stress. The simulation results showed that oxidative stress caused early afterdepolarizations (EADs) of action potentials by altering the dynamics of transmembrane currents and intracellular calcium cycling. Oxidative stress gradually elevated the concentration of calcium ions in the cytoplasm by enhancing the L-type Ca2+ current and sarcoplasmic reticulum (SR) calcium release. Owing to increased intracellular calcium concentration, the inward Na+/Ca2+ exchange current was elevated which slowed down the repolarization of the action potential. Thus, the action potential was prolonged and the L-type Ca2+ current was reactivated, resulting in the genesis of EAD. Furthermore, based on the atrial single-cell model, a two-dimensional (2D) ideal tissue model was developed to explore the effect of oxidative stress on the electrical excitation wave conduction in 2D tissue. Simulation results demonstrated that, under oxidative stress conditions, EAD hindered the conduction of electrical excitation and caused an unstable spiral wave, which could disrupt normal cardiac rhythm and cause atrial arrhythmia. This study showed the effects of excess reactive oxygen species on calcium cycling and action potential in atrial myocytes and provided insights regarding atrial arrhythmia induced by oxidative stress.


2019 ◽  
Vol 25 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Vassileios Moschovidis ◽  
Vassileios Simopoulos ◽  
Soultana Stravela ◽  
Konstantina Dipla ◽  
Apostolia Hatziefthimiou ◽  
...  

Ranolazine has been found to prevent ventricular arrhythmias (VAs) during acute myocardial infarction (AMI). This study aimed to investigate its efficacy on VAs induced several days post-MI. For this purpose, 13 anesthetized rabbits underwent coronary artery ligation. Ten of these animals that survived AMI were reanesthetized 3 to 7 days later for electrophysiologic testing. An endocardial monophasic action potential combination catheter was placed in the right ventricle for simultaneous pacing and recording. Monophasic action potential duration, ventricular effective refractory period (VERP), and VAs induced by programmed stimulation were assessed. Measurements were performed during control pacing, and following an intravenous infusion of either a low-dose ranolazine (2.4 mg/kg, R1) or a higher dose ranolazine (4.8 mg/kg cumulative dose, R2). During control stimulation, 2 animals developed primary ventricular fibrillation (VF), 6 sustained ventricular tachycardia (sVT), and 2 nonsustained VT (nsVT). R1 did not prevent the appearance of VAs in any of the experiments; in contrast, it aggravated nsVT into sVT and complicated sVT termination in 2 of 6 animals. Sustained ventricular tachycardia cycle length and VERP were only slightly decreased after R1 (112 ± 5 vs 110 ± 6 ms and 101 ± 11 vs 98 ± 10 ms, respectively). R2 suppressed inducibility of control nsVT, VF, and sVT in 2 animals. In 4 animals with still inducible sVT, R2 significantly prolonged VT cycle length by 150 ± 23 ms ( P < .01), and VERP by 120 ± 7 ms ( P < .001) versus control. In conclusion, R2 exerted antiarrhythmic efficacy against subacute-MI VAs, whereas R1 rather aggravated than prevented these arrhythmias. Ventricular effective refractory period prolongation could partially explain the antiarrhythmic action of R2 in this rabbit model.


2012 ◽  
pp. 74-83
Author(s):  
Anh Tien Hoang ◽  
Nhat Quang Nguyen

Background: Decades of research now link TWA with inducible and spontaneous clinical ventricular arrhythmias. This bench-to-bedside foundation makes TWA, NT-ProBNP a very plausible index of susceptibility to ventricular arrythmia, and motivates the need to define optimal combination of TWA and NT-ProBNP in predicting ventricular arrythmia in myocardial infarction patients. We research this study with 2 targets: 1. To evaluate the role of TWA in predicting sudden cardiac death in myocardial infarction patients. 2. To evaluate the role of NT-ProBNP in predicting sudden cardiac death in myocardial infarction patients 3. Evaluate the role of the combined NT-ProBNP and TWA in predicting sudden cardiac death in myocardial infarction patients. Methods: Prospective study with follow up the mortality in 2 years: 71 chronic myocardial infarction patients admitted to hospital from 5/2009 to 5/20011 and 50 healthy person was done treadmill test to caculate TWA; ECG, echocardiography, NT-ProBNP. Results: Cut-off point of NT-ProBNP in predicting sudden cardiac death is 3168 pg/ml; AUC = 0,86 (95% CI: 0,72 - 0,91); Cut-off point of TWA in predicting sudden cardiac death is 107 µV; AUC = 0,81 (95% CI: 0,69 - 0,87); NT-ProBNP can predict sudden cardiac death with OR= 7,26 (p<0,01); TWA can predict sudden cardiac death with OR= 8,45 (p<0,01). The combined NT-ProBNP and TWA in predicting ventricular arrythmia in heart failure patients: OR= 17,91 (p<0,001). Conclusions: The combined NT-ProBNP and TWA have the best predict value of sudden cardiac death in myocardial infarction patients, compare to NT-ProBNP or TWA alone


1993 ◽  
Vol 69 (6) ◽  
pp. 1940-1947 ◽  
Author(s):  
L. D. Rhines ◽  
P. G. Sokolove ◽  
J. Flores ◽  
D. W. Tank ◽  
A. Gelperin

1. The olfactory processing network in the procerebral (PC) lobe of the terrestrial mollusk Limax maximus exhibits a coherent oscillation of local field potential that is modulated by odor input. To understand the cellular basis of this oscillation, we developed a cell culture preparation of isolated PC neurons and studied the responses of isolated cells to stimulation with neurotransmitters known to be present in the PC lobe. 2. The distribution of PC soma diameters suggests at least two different populations of neurons. Approximately 95% of isolated cells had soma diameters of 7-8 microns, with the remaining cells having larger diameters (10-15 microns). 3. Extracellular measurements of action potentials and optical measurements of intracellular calcium concentrations in fura-2-loaded cells were made. Serotonin and dopamine excited PC neurons and promoted transitions from steady to bursty activity. Both amines elicited increases in intracellular calcium, presumably concomitant with the increase in action-potential frequency. 4. Glutamate suppressed action-potential firing and reduced intracellular calcium. This effect was seen most clearly when glutamate was applied to cells excited by high potassium medium. Quisqualate is an effective glutamate agonist in this system, whereas kainate is not. 5. Combined with anatomic and biochemical data and with studies of the effects of these neurotransmitters on the oscillating local field potential of the intact PC network, the data from isolated PC neurons are consistent with the hypothesis that dopamine and serotonin modulate network dynamics, whereas glutamate is involved in generating the basic oscillation of local field potential in the PC. 6. The optical studies of fura-2-loaded cells showed that several treatments that increase the rate of action-potential production lead to elevations in intracellular calcium. Optical studies of intracellular calcium may be useful for multisite measurements of activity in the intact, oscillating PC lobe network.


2003 ◽  
Vol 145 (3) ◽  
pp. 515-521 ◽  
Author(s):  
Sana M. Al-Khatib ◽  
Amanda L. Stebbins ◽  
Robert M. Califf ◽  
Kerry L. Lee ◽  
Christopher B. Granger ◽  
...  

Angiology ◽  
1983 ◽  
Vol 34 (3) ◽  
pp. 204-214 ◽  
Author(s):  
E. Grenadier ◽  
G. Alpan ◽  
S. Keidar ◽  
D. Weiss ◽  
A. Marmor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document