scholarly journals Evaluación del efecto del plasma rico en plaquetas en diferentes tiempos y concentraciones sobre la viabilidad de fibroblastos de ligamento periodontal y osteoblastos / Evaluation of Platelet-Rich Plasma Effect at different times and concentrations ...

2017 ◽  
Vol 36 (76) ◽  
Author(s):  
Adriana Paola Acosta Gómez ◽  
Sandra Janeth Gutiérrez Prieto ◽  
María Alexandra Bedoya Mejía ◽  
Dabeiba Adriana García Robayo ◽  
Ximena Edilia Moreno Serrano

<strong>ABSTRACT<em>. Background:</em></strong><em> </em>Growth factors used in health treatments can be obtained from a first-generation source called platelet-rich plasma. The variety of protocols to prepare PRP produces variable results regarding PRP activation time and its effects on cell proliferation and viability. <strong><em>Purpose:</em></strong><em> </em>To evaluate proliferation and cell viability of periodontal ligament fibroblasts and osteoblasts stimulated with PRP in several concentrations and times after PRP activation. <strong><em>Methods:</em></strong> An in vitro study was carried out using periodontal ligament fibroblast and osteoblast cell cultures. PRP from venous blood of a healthy adult was prepared through centrifugation and activated with 10 % CaCl<sub>2</sub>. The effect on cell proliferation after application of 1 %, 3 %, and 5% PRP and platelet-poor plasma was evaluated at 0, 12, 24, 48, and 72 hours after activation through MTS. The control group consisted of culture that did not receive any treatment. Data were analyzed using Chi square, Fisher, and McNemar tests. <strong><em>Results:</em></strong><em> </em>The cell viability assay showed statistically significant differences between the experimental and the control groups. Cell viability increased in cells treated with 5 % PRP 24 hours after activation (p=0.05). <strong><em>Conclusions:</em></strong><em> </em>Fibroblast and osteoblast cell lines tended to be more viable 24 hours after activation with 5% PRP.

2016 ◽  
Vol 27 (2) ◽  
pp. 187-191 ◽  
Author(s):  
Hernán Coaguila-Llerena ◽  
Abraham Vaisberg ◽  
Zulema Velásquez-Huamán

Abstract The aim of this study was to evaluate in vitro the cytotoxicity on human periodontal ligament fibroblasts of three root-end filling materials: MTA Angelus(r), EndoSequence Root Repair Material Putty(r) and Super EBA(r). A primary culture of human periodontal ligament fibroblasts was previously obtained in order to evaluate the cytotoxicity of the three extracts from the root-end filling materials after 2 and 7 days of setting. Serial dilutions of these extracts (1:1, 1:2, 1:4 and 1:8) were evaluated at 1, 3 and 7 days using the methyl-thiazol-tetrazolium (MTT) colorimetric assay. Cell viability was evaluated as percentage of the negative control group, which represented 100% cell viability. Statistical analyses were done with t-test, ANOVA and Kruskal-Wallis test at a significance level of 5%. It was found that the main difference among root-end filling materials was in the higher dilutions (p<0.05), but there was a similar behavior in lower dilutions (p>0.05). Cell viability of MTA Angelus(r) was superior for 2-day setting (p<0.05), compared with the other two root-end fillings. There were no statistically significant differences between 7-day set MTA Angelus(r) and EndoSequence Root Repair Material Putty(r). Super EBA(r) showed the lowest percentage of cell viability at higher dilutions (p<0.05). Therefore, MTA Angelus(r) and EndoSequence Root Repair Material Putty(r) were less cytotoxic in the highest dilution (1:1) compared with Super EBA(r).


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sedigheh Khedmat ◽  
Pegah Sarraf ◽  
Ehsan Seyedjafari ◽  
Parisa Sanaei-rad ◽  
Faranak Noori

Abstract Background Biocompatibility and induction of mineralized tissue formation are the properties expected from a material used in vital pulp therapy and repair of perforations. Cold ceramic (SJM, Iran; CC) is a newly introduced calcium silicate-based cement for above mentioned therapeutic applications. This in-vitro study aimed to compare the effect of CC and White MTA-Angelus (MTA) on cell viability, attachment, odontogenic differentiation, and calcification potential of human dental pulp stem cells (DPSCs) and periodontal ligament fibroblasts (PDLFs). Methods Cell viability of DPSCs and PDLFs was assessed using MTT on days 1, 3, 7, and 14 (n = 9) in contact with freshly mixed and set states of CC and MTA. Field emission scanning electron micrographs (FESEM) were taken to evaluate cell-bioceramic interaction (n = 6). Gene expression levels of osteo/odontogenic markers (Dentin sialophosphoprotein, Dentin matrix protein 1, Collagen type I alpha 1, and Alkaline phosphatase (DSPP, DMP1, COL 1A1, and ALP, respectively) (n = 8) were assessed using qrt-PCR. ALP enzymatic activity was evaluated to assess the mineralization potential. A two-way ANOVA test was applied, and p < 0.05 was considered to be statistically significant. Results The effect of freshly mixed and set MTA and CC on the survival of DPSCs and PDLFs in all study groups was statistically similar and comparable to the positive control group (p > 0.05); the only exception was for the viability of PDLFs in contact with freshly mixed cements on day 1, showing a more significant cytotoxic effect compared to the control and the set state of materials (p < 0.05). PDLFs attached well on CC and MTA. The spread and pseudopodium formation of the cells increased on both samples from day 1 to day 14. Contact of MTA and CC with DPSCs similarly increased expression of all dentinogenesis markers studied on days 7 and 14 compared to the control group (p < 0.001), except for DSPP expression on day 7 (p = 0.46 and p = 0.99 for MTA and CC, respectively). Conclusions Within the limitation of this in-vitro study, cold ceramic and MTA-Angelus showed high biocompatibility and induced increased expression of osteo/dentinogenic markers. Therefore, cold ceramic can be a suitable material for vital pulp therapy and the repair of root perforations.


2006 ◽  
Vol 7 (1) ◽  
pp. 35-43 ◽  
Author(s):  
R. Viswa Chandra ◽  
Ganesh Chandra Jagetia ◽  
K. Mahalinga Bhat

Abstract Objective The present in vitro study has been designed to establish and compare the effects of citric acid, EDTA, and tetracycline HCl on human periodontally diseased roots on the structure, attachment, and orientation of V79 (primary Chinese hamster lung fibroblasts) cells and human periodontal ligament fibroblasts (HPDL). Materials and Methods Commercially availableV79 cells and HPDL derived from healthy human third molars were used in this study. These fibroblasts were left in solution for seven days in order to attain confluence. Forty single-rooted teeth were obtained from patients diagnosed with periodontitis. The crown part was removed under constant irrigation and the root was split vertically into two equal halves, thus, yielding 80 specimens. Following scaling and root planing, the specimens were washed with phosphate buffered saline (PBS) and kept in 50 μg/ml gentamycin sulphate solution for 24 hours. The root pieces were then treated as follows: citric acid at pH 1, 24% EDTA, or with a 10% solution of tetracycline HCl and were then placed in V79 fibroblast cultures and HPDL cultures. The specimens were harvested after four weeks and were fixed in 2.5% glutaraldehyde in PBS before preparation for scanning electron microscopy (SEM). Results The behavior of V79 cells was similar to that of human periodontal ligament cells on root conditioned surfaces. V79 and HPDL showed a healthy morphology on root surfaces treated with citric acid and EDTA and a relatively unhealthy appearance on root surfaces treated with tetracycline HCl and distilled water (control group). Conclusion The results suggest the use of citric acid and EDTA as root conditioning agents favorably affects the migration, attachment, and morphology of fibroblasts on human root surfaces, which may play a significant role in periodontal healing and regeneration. Citation Chandra RV, Jagetia GC, Bhat KM. The Attachment of V79 and Human Periodontal Ligament Fibroblasts on Periodontally Involved Root Surfaces Following Treatment with EDTA, Citric Acid, or Tetracycline HCL: An SEM in vitro Study. J Contemp Dent Pract 2006 February;(7)1:044-059.


2006 ◽  
Vol 7 (1) ◽  
pp. 44-59 ◽  
Author(s):  
R. Viswa Chandra ◽  
Ganesh Chandra Jagetia ◽  
K. Mahalinga Bhat

Abstract Objective The present in vitro study has been designed to establish and compare the effects of citric acid, EDTA, and tetracycline HCl on human periodontally diseased roots on the structure, attachment, and orientation of V79 (primary Chinese hamster lung fibroblasts) cells and human periodontal ligament fibroblasts (HPDL). Materials and Methods Commercially availableV79 cells and HPDL derived from healthy human third molars were used in this study. These fibroblasts were left in solution for seven days in order to attain confluence. Forty single-rooted teeth were obtained from patients diagnosed with periodontitis. The crown part was removed under constant irrigation and the root was split vertically into two equal halves, thus, yielding 80 specimens. Following scaling and root planing, the specimens were washed with phosphate buffered saline (PBS) and kept in 50 μg/ml gentamycin sulphate solution for 24 hours. The root pieces were then treated as follows: citric acid at pH 1, 24% EDTA, or with a 10% solution of tetracycline HCl and were then placed in V79 fibroblast cultures and HPDL cultures. The specimens were harvested after four weeks and were fixed in 2.5% glutaraldehyde in PBS before preparation for scanning electron microscopy (SEM). Results The behavior of V79 cells was similar to that of human periodontal ligament cells on root conditioned surfaces. V79 and HPDL showed a healthy morphology on root surfaces treated with citric acid and EDTA and a relatively unhealthy appearance on root surfaces treated with tetracycline HCl and distilled water (control group). Conclusion The results suggest the use of citric acid and EDTA as root conditioning agents favorably affects the migration, attachment, and morphology of fibroblasts on human root surfaces, which may play a significant role in periodontal healing and regeneration. Citation Chandra RV, Jagetia GC, Bhat KM. The Attachment of V79 and Human Periodontal Ligament Fibroblasts on Periodontally Involved Root Surfaces Following Treatment with EDTA, Citric Acid, or Tetracycline HCL: An SEM in vitro Study. J Contemp Dent Pract 2006 February;(7)1:044-059.


2013 ◽  
Vol 24 (2) ◽  
pp. 111-116 ◽  
Author(s):  
Patrícia Yoshino ◽  
Celso Kenji Nishiyama ◽  
Karin Cristina da Silva Modena ◽  
Carlos Ferreira Santos ◽  
Carla Renata Sipert

The aim of this study was to compare the in vitro cytotoxicity of white mineral trioxide aggregate (MTA), MTA Fillapex® and Portland cement (PC) on human cultured periodontal ligament fibroblasts. Periodontal ligament fibroblast culture was established and the cells were used for cytotoxic tests after the fourth passage. Cell density was set at 1.25 X10 4 cells/well in 96-well plates. Endodontic material extracts were prepared by placing sealer/cement specimens (5X3mm) in 1mL of culture medium for 72 h. The extracts were then serially two-fold diluted and inserted into the cell-seeded wells for 24, 48 and 72 h. MTT assay was employed for analysis of cell viability. Cell supernatants were tested for nitric oxide using the Griess reagent system. MTA presented cytotoxic effect in undiluted extracts at 24 and 72 h. MTA Fillapex® presented the highest cytotoxic levels with important cell viability reduction for pure extracts and at ½ and ¼ dilutions. In this study, PC did not induce alterations in fibroblast viability. Nitric oxide was detected in extract-treated cell supernatants and also in the extracts only, suggesting presence of nitrite in the soluble content of the tested materials. In the present study, MTA Fillapex displayed the highest cytotoxic effect on periodontal ligament fibroblasts followed by white MTA and PC.


2021 ◽  
Vol 15 (1) ◽  
pp. 417-423
Author(s):  
Fabio Schemann-Miguel ◽  
Antonio Carlos Aloise ◽  
Silvana Gaiba ◽  
Lydia Masako Ferreira

Background: The application of static compressive forces to periodontal ligament fibroblasts (PDLFs) in vivo or in vitro has been linked to the expression of biochemical agents and local tissue modifications that could be involved in maintaining homeostasis during orthodontic movement. An approach used for identifying mesenchymal cells, or a subpopulation of progenitor cells in both tumoral and normal tissues, involves determining the activity of aldehyde dehydrogenase (ALDH). However, the role of subpopulations of PDLF-derived undifferentiated cells in maintaining homeostasis during tooth movement remains unclear. Objective: This study aimed at analyzing the effect of applying a static compressive force to PDLFs on the activity of ALDH in these cells. Methods: PDLFs were distributed into two groups: control group (CG), where fibroblasts were not submitted to compression, and experimental group (EG), where fibroblasts were submitted to a static compressive force of 4 g/mm2 for 6 hours. The compressive force was applied directly to the cells using a custom-built device. ALDH activity in the PDLFs was evaluated by a flow cytometry assay. Results: ALDH activity was observed in both groups, but was significantly lower in EG than in CG after the application of a static compressive force in the former. Conclusion: Application of a static compressive force to PDLFs decreased ALDH activity.


2019 ◽  
Vol 26 (12) ◽  
pp. 887-892
Author(s):  
Cynarha Daysy Cardoso da Silva ◽  
Cristiane Moutinho Lagos de Melo ◽  
Elba Verônica Matoso Maciel Carvalho ◽  
Mércia Andréa Lino da Silva ◽  
Rosiely Félix Bezerra ◽  
...  

Background: Lectins have been studied in recent years due to their immunomodulatory activities. Objective: We purified a lectin named OniL from tilapia fish (Oreochromis niloticus) and here we analyzed the cell proliferation and cytokine production in Balb/c mice splenocytes. Methods: Cells were stimulated in vitro in 24, 48, 72 hours and 6 days with different concentrations of OniL and Con A. Evaluation of cell proliferation was performed through [3H]-thymidine incorporation, cytokines were investigated using ELISA assay and cell viability assay was performed by investigation of damage through signals of apoptosis and necrosis. Results: OniL did not promote significant cell death, induced high mitogenic activity in relation to control and Con A and stimulated the cells to release high IL-2 and IL-6 cytokines. Conclusion: These findings suggest that, like Con A, OniL lectin can be used as a mitogenic agent in immunostimulatory assays.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jun Liu ◽  
Jipeng Li ◽  
Ke Wang ◽  
Haiming Liu ◽  
Jianyong Sun ◽  
...  

AbstractFork-head box protein M1 (FoxM1) is a transcriptional factor which plays critical roles in cancer development and progression. However, the general regulatory mechanism of FoxM1 is still limited. STMN1 is a microtubule-binding protein which can inhibit the assembly of microtubule dimer or promote depolymerization of microtubules. It was reported as a major responsive factor of paclitaxel resistance for clinical chemotherapy of tumor patients. But the function of abnormally high level of STMN1 and its regulation mechanism in cancer cells remain unclear. In this study, we used public database and tissue microarrays to analyze the expression pattern of FoxM1 and STMN1 and found a strong positive correlation between FoxM1 and STMN1 in multiple types of cancer. Lentivirus-mediated FoxM1/STMN1-knockdown cell lines were established to study the function of FoxM1/STMN1 by performing cell viability assay, plate clone formation assay, soft agar assay in vitro and xenograft mouse model in vivo. Our results showed that FoxM1 promotes cell proliferation by upregulating STMN1. Further ChIP assay showed that FoxM1 upregulates STMN1 in a transcriptional level. Prognostic analysis showed that a high level of FoxM1 and STMN1 is related to poor prognosis in solid tumors. Moreover, a high co-expression of FoxM1 and STMN1 has a more significant correlation with poor prognosis. Our findings suggest that a general FoxM1-STMN1 axis contributes to cell proliferation and tumorigenesis in hepatocellular carcinoma, gastric cancer and colorectal cancer. The combination of FoxM1 and STMN1 can be a more precise biomarker for prognostic prediction.


Sign in / Sign up

Export Citation Format

Share Document