scholarly journals Aberrantly high activation of a FoxM1–STMN1 axis contributes to progression and tumorigenesis in FoxM1-driven cancers

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jun Liu ◽  
Jipeng Li ◽  
Ke Wang ◽  
Haiming Liu ◽  
Jianyong Sun ◽  
...  

AbstractFork-head box protein M1 (FoxM1) is a transcriptional factor which plays critical roles in cancer development and progression. However, the general regulatory mechanism of FoxM1 is still limited. STMN1 is a microtubule-binding protein which can inhibit the assembly of microtubule dimer or promote depolymerization of microtubules. It was reported as a major responsive factor of paclitaxel resistance for clinical chemotherapy of tumor patients. But the function of abnormally high level of STMN1 and its regulation mechanism in cancer cells remain unclear. In this study, we used public database and tissue microarrays to analyze the expression pattern of FoxM1 and STMN1 and found a strong positive correlation between FoxM1 and STMN1 in multiple types of cancer. Lentivirus-mediated FoxM1/STMN1-knockdown cell lines were established to study the function of FoxM1/STMN1 by performing cell viability assay, plate clone formation assay, soft agar assay in vitro and xenograft mouse model in vivo. Our results showed that FoxM1 promotes cell proliferation by upregulating STMN1. Further ChIP assay showed that FoxM1 upregulates STMN1 in a transcriptional level. Prognostic analysis showed that a high level of FoxM1 and STMN1 is related to poor prognosis in solid tumors. Moreover, a high co-expression of FoxM1 and STMN1 has a more significant correlation with poor prognosis. Our findings suggest that a general FoxM1-STMN1 axis contributes to cell proliferation and tumorigenesis in hepatocellular carcinoma, gastric cancer and colorectal cancer. The combination of FoxM1 and STMN1 can be a more precise biomarker for prognostic prediction.

2013 ◽  
Vol 220 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Dang-Dang Li ◽  
Ying-Jie Gao ◽  
Xue-Chao Tian ◽  
Zhan-Qing Yang ◽  
Hang Cao ◽  
...  

Tryptophan 2,3-dioxygenase (Tdo2) is a rate-limiting enzyme which directs the conversion of tryptophan to kynurenine. The aim of this study was to examine the expression and regulation of Tdo2 in mouse uterus during decidualization. Tdo2 mRNA was mainly expressed in the decidua on days 6–8 of pregnancy. By real-time PCR, a high level of Tdo2 expression was observed in the uteri from days 6 to 8 of pregnancy, although Tdo2 expression was observed on days 1–8. Simultaneously, Tdo2 mRNA was also detected under in vivo and in vitro artificial decidualization. Estrogen, progesterone, and 8-bromoadenosine-cAMP could induce the expression of Tdo2 in the ovariectomized mouse uterus and uterine stromal cells. Tdo2 could regulate cell proliferation and stimulate the expression of decidual marker Dtprp in the uterine stromal cells and decidual cells. Overexpression of Tdo2 could upregulate the expression of Ahr, Cox2, and Vegf genes in uterine stromal cells, while Tdo2 inhibitor 680C91 could downregulate the expression of Cox2 and Vegf genes in uterine decidual cells. These data indicate that Tdo2 may play an important role during mouse decidualization and be regulated by estrogen, progesterone, and cAMP.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Weixing Dai ◽  
Xianke Meng ◽  
Shaobo Mo ◽  
Wenqiang Xiang ◽  
Ye Xu ◽  
...  

Abstract Background Low expression of FOXE1, a member of Forkhead box (FOX) transcription factor family that plays vital roles in cancers, contributes to poor prognosis of colorectal cancer (CRC) patients. However, the underlying mechanism remains unclear. Materials and methods The effects of FOXE1 on the growth of colon cancer cells and the expression of glycolytic enzymes were investigated in vitro and in vivo. Molecular biological experiments were used to reveal the underlying mechanisms of altered aerobic glycolysis. CRC tissue specimens were used to determine the clinical association of ectopic metabolism caused by dysregulated FOXE1. Results FOXE1 is highly expressed in normal colon tissues compared with cancer tissues and low expression of FOXE1 is significantly associated with poor prognosis of CRC patients. Silencing FOXE1 in CRC cell lines dramatically enhanced cell proliferation and colony formation and promoted glucose consumption and lactate production, while enforced expression of FOXE1 manifested the opposite effects. Mechanistically, FOXE1 bound directly to the promoter region of HK2 and negatively regulated its transcription. Furthermore, the expression of FOXE1 in CRC tissues was negatively correlated with that of HK2. Conclusion FOXE1 functions as a critical tumor suppressor in regulating tumor growth and glycolysis via suppressing HK2 in CRC.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Xinchao Deng ◽  
Congzhe Hou ◽  
Zhen Liang ◽  
Huali Wang ◽  
Lin Zhu ◽  
...  

Background. MicroRNA-202 (miR-202) has been reported to be aberrantly regulated in several cancers. The aim of this study is to explore the functional role of miR-202 in EAC tumor growth. Material and Methods. miR-202 expression was detected by qRT-PCR. TargetScan and luciferase reporter assay were used to elucidate the candidate target gene of miR-202. The FOXR2 protein level was assessed by Western blot and immunohistochemistry. Survival analysis was explored for FOXR2 expression in EAC patients. Results. miR-202 expression was significantly decreased in EAC tissues (P<0.01) compared with that in control tissues. And the downregulate miR-202 was significantly associated with poor prognosis (P<0.01). Re-expression of miR-202 dramatically suppressed cell proliferation in vitro and tumor growth in vivo. FOXR2 was identified as a direct target of miR-202. In EAC tissues, FOXR2 was upregulated and the increased FOXR2 was significantly associated with poor prognosis. In miR-202-transfected cells, the FOXR2 expression was inversely changed. The analysis of FOXR2 protein expression and miR-202 transcription in EAC tissues showed negative correlation (R=−0.429). Conclusion. miR-202 may function as a tumor suppressor in EAC tumor growth by targeting FOXR2 oncogene, which may provide new insights into the molecular mechanism and new targets for treatment of EAC.


Author(s):  
Qingqu Guo ◽  
Dike Shi ◽  
Lele Lin ◽  
Hongbo Li ◽  
Yunhai Wei ◽  
...  

USP21 is a kind of deubiquitinating enzymes involved in the malignant progression of various cancers, while its role in gastric cancer (GC) and the specific molecular mechanism are still unclear. This study probed into the function of USP21 in vitro and in vivo, and discussed the regulatory mechanism of USP21 in GC in vitro. We reported that USP21 promoted GC cell proliferation, migration, invasion, and stemness in vitro, and regulated GC tumor growth and cell stemness in mice in vivo. USP21 stabilized the expression of GATA3 by binding to GATA3. Besides, GATA3 also regulated the expression of MAPK1 at the transcriptional level. A series of in vitro experiments testified that USP21 regulated the expression of MAPK1 by binding to transcription factor GATA3, thereby regulating the tumor growth and cell stemness of GC. Overall, this study identified a new USP21/GATA3/MAPK1 axis, which plays a pivotal role in promoting the malignant progression of GC and might provide a potential target for treatment.


2020 ◽  
Author(s):  
Zhanfeng Yan ◽  
Xiaohui Wen ◽  
Jinsheng Dai ◽  
Jinfeng Liu ◽  
Pengpeng Hao ◽  
...  

Abstract Background Laryngeal cancer is the highest incidence of head and neck cancers in the world. Increasing evidences have demonstrated that long non-coding RNAs (lncRNAs) play crucial roles in the progression of laryngeal cancer. Despite of the essential role of lncRNA DUXAP8 in many human cancers, its function and specific mechanisms in laryngeal cancer are poorly understood. Methods Differentially expression analysis of lncRNAs in GSE59652 dataset was performed by using limma package of R language. The expression of DUXAP8, miR-384 and candidate mRNAs was evaluated by qRT-PCR. Luciferase reporter assay and RIP assay were performed to determine the direct correlation between DUXAP8, miR-384 and POU2F1. Cell proliferation of laryngeal cancer cell lines TU212 and TU177 cells was evaluated by using CCK-8 assay, colony formation assay and EdU staining assay. Xenograft tumor model in vivo and rescue experiments were performed to explore the function and mechanisms of DUXAP8 in laryngeal cancer. Results The expression of DUXAP8 in tumor tissues was higher than that in adjacent normal tissues. High level of DUXAP8 was closely correlated to the worse prognosis of laryngeal cancer patients. Knockdown of DUXAP8 inhibited the proliferation of TU212 and TU177 cells in vitro, as well as tumor growth in vivo. Furthermore, overexpression of POU2F1 significantly attenuated the inhibitory effect of sh-DUXAP8 on cell proliferation of TU212 and TU177 cells. In addition, sh-DUXAP8 significantly decreased the expression of DUXAP8 and POU2F1, while increased miR-384 expression in tumor tissues compared with sh-NC group. Conclusion DUXAP8 acted as a sponge of tumor suppressor miR-384 and then upregulated POU2F1 expression, thereby promoted the development of laryngeal cancer. Our findings suggest that DUXAP8 may serve as a potential therapeutic target for laryngeal cancer.


Author(s):  
Hai Huang ◽  
Song Park ◽  
Haibo Zhang ◽  
Sijun Park ◽  
Wookbong Kwon ◽  
...  

Abstract Background Colorectal cancer (CRC) is a clinically challenging malignant tumor worldwide. As a natural product and sesquiterpene lactone, Costunolide (CTD) has been reported to possess anticancer activities. However, the regulation mechanism and precise target of this substance remain undiscovered in CRC. In this study, we found that CTD inhibited CRC cell proliferation in vitro and in vivo by targeting AKT. Methods Effects of CTD on colon cancer cell growth in vitro were evaluated in cell proliferation assays, migration and invasion, propidium iodide, and annexin V-staining analyses. Targets of CTD were identified utilizing phosphoprotein-specific antibody array; Costunolide-sepharose conjugated bead pull-down analysis and knockdown techniques. We investigated the underlying mechanisms of CTD by ubiquitination, immunofluorescence staining, and western blot assays. Cell-derived tumour xenografts (CDX) in nude mice and immunohistochemistry were used to assess anti-tumour effects of CTD in vivo. Results CTD suppressed the proliferation, anchorage-independent colony growth and epithelial-mesenchymal transformation (EMT) of CRC cells including HCT-15, HCT-116 and DLD1. Besides, the CTD also triggered cell apoptosis and cell cycle arrest at the G2/M phase. The CTD activates and induces p53 stability by inhibiting MDM2 ubiquitination via the suppression of AKT’s phosphorylation in vitro. The CTD suppresses cell growth in a p53-independent fashion manner; p53 activation may contribute to the anticancer activity of CTD via target AKT. Finally, the CTD decreased the volume of CDX tumors without of the body weight loss and reduced the expression of AKT-MDM2-p53 signaling pathway in xenograft tumors. Conclusions Our project has uncovered the mechanism underlying the biological activity of CTD in colon cancer and confirmed the AKT is a directly target of CTD. All of which These results revealed that CTD might be a new AKT inhibitor in colon cancer treatment, and CTD is worthy of further exploration in preclinical and clinical trials.


2020 ◽  
Author(s):  
Chunjun Zhan ◽  
Yingyue Pan ◽  
Xiuxia Liu ◽  
Chunli Liu ◽  
Jinling Zhan ◽  
...  

Abstract Background Methanol expression regulator 1 (Mxr1p) is a key transcription factor that plays a vital role in the methanol utilization pathway in Pichia pastoris ( P. pastoris ). Most genes referred to the methanol utilization pathway were regulated by Mxr1p. However, some genes did not show a significant difference between methanol and glycerol even though they play an important role in the methanol utilization pathway. So far, the regulation mechanism about these genes and the relationship with Mxr1p are still unknown. Results Methanol metabolic pathway analysis revealed that most of the methanol-induced genes were upregulated in transcriptional level when cultured in methanol. Whereas some genes like tkl1 (transketolase 1) did not show significant up-regulation in methanol even though it plays a very important role in Xu5P recycle, the reason is still not clear. To clarify this point, firstly, pull-down and MS experiments were performed. The result shows that Tkl1p protein combined with Mxr1p in vitro . Subsequently, this result was further confirmed by yeast two-hybrid in vivo , and the binding region mainly located from 150AA to 400AA. Moreover, Ser215 phosphorylation did not affect this interaction. In addition, Mxr1p-400AA integration into Δmxr1 could rescue cell growth in methanol. All the above results proved that Mxr1p played a post-translational role in the methanol utilization pathway and Mxr1p-400AA may achieved most of Mxr1p functions. Secondly, the function of Mxr1p-Tkl1p complex was expounded by detecting formaldehyde consumption and xylulose production in cell-free systems. Results showed that Mxr1p-Tkl1p mixture could promote formaldehyde consumption and xylulose production in vitro . Conclusion Mxr1p promotes methanol utilization via combining with Tkl1p to accelerate Xu5P recycle and this interaction was not affected by Ser215 phosphorylation.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chengpeng Yu ◽  
Dean Rao ◽  
He Zhu ◽  
Qiumeng Liu ◽  
Wenjie Huang ◽  
...  

Background. Tryptophan-2,3-dioxygenase (TDO2) converts tryptophan into kynurenine in the initial limiting step of the kynurenine pathway. During the past decade, the overexpression of TDO2 has been found in various human tumors. However, the role of TDO2 in hepatocellular carcinoma is controversial, and we sought to clarify it in this study. Methods. Western blot analysis and immunochemistry were used to detect the expression of TDO2 in human tissue specimens. The effect of TDO2 on cell proliferation in vitro was assessed using CCK8 and colony formation assays, and a xenograft mouse model was used to detect the effect of TDO2 on tumor growth in vivo. Flow cytometry was used to assess the cell cycle status. Results. Low TDO2 expression was found in HCC and was associated with poor prognosis and adverse clinical outcomes. Conversely, TDO2 could restrain the proliferation of HCC cells in vivo and in vitro. Furthermore, TDO2 upregulated the expression of p21 and p27, inducing cell-cycle arrest. Conclusions. The loss of TDO2 expression in HCC was correlated with a poor prognosis and adverse clinical outcomes. At the same time, TDO2 could restrain the growth of HCC in vivo and in vitro. The results indicate that TDO2 is a potential biomarker and therapeutic target for HCC.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Shu Zhang ◽  
Ping Li ◽  
Lei Zhao ◽  
Ling Xu

As a kind of essential regulators, long noncoding RNAs (lncRNAs) have attracted a lot of attention in recent years. Nevertheless, the function of lncRNA in nasopharyngeal carcinoma (NPC) remains poorly understood. In the present study, we explained the role and mechanism of LINC00210 in NPC progression. We found that LINC00210 expression was up-regulated in NPC samples. Besides, its overexpression was positively correlated with NPC metastasis while predicting poor prognosis. Based on functional experiments, we revealed that LINC00210 contributed to NPC cell proliferation and invasion in vitro, and promotes tumor growth in vivo. Mechanistically, we identified that LINC00210 was located in the cytoplasm of NPC cells and served as the miR-328-5p sponge. Furthermore, we showed that miR-328-5p targets the 3′ untranslated region (3′-UTR) of NOTCH3. Through inhibiting miR-328-5p activity, LINC00210 promoted NOTCH3 expression in NPC, leading to activation of NOTCH3 signaling pathway. In conclusion, our study indicates LINC00210 promotes NPC progression through modulating proliferation and invasion.


Sign in / Sign up

Export Citation Format

Share Document