Development of Three-Dimensional Distribution Visualization Technology for Boron Using Energy Resolved Neutron-Imaging System (RADEN)

2021 ◽  
Author(s):  
Yuta Abe ◽  
Tetsuya Kai ◽  
Yusuke Tsuchikawa ◽  
Yoshihiro Matsumoto ◽  
Joseph D. Parker ◽  
...  
Author(s):  
Yuta Abe ◽  
Yusuke Tsuchikawa ◽  
Tetsuya Kai ◽  
Yoshihiro Matsumoto ◽  
Joseph D. Parker ◽  
...  

Abstract Boron carbide is used as a neutron-absorbing material in Fukushima-Daiichi Nuclear Power Station (1F), producing borides that are twice as hard as oxides (such as UO2 and ZrO2). The high neutron absorption of boron affects the evaluation of re-criticality during the process of debris retrieval. Therefore, it is important not only to determine the presence of boron but also to investigate the distribution of boron inside the material in a non-destructive manner during decommissioning. To address the uncertainties in the core material relocation behavior of boiling water reactor (BWR) during a severe accident (SA), solidified melt specimens of a simulated fuel assembly were prepared by plasma heating. If core material melting and relocation (CMMR) specimens can be used to estimate the B distribution in 1F Unit-3, that will provide valuable information in the decommissioning of 1F. To address this, the authors focused on the energy-resolved neutron-imaging system, RADEN, which utilizes a wide energy range, from meV to keV. This is an innovative three-dimensional analysis technology for boride distribution that affects the evaluation of hardness and re-criticality. In the calibration standard samples (ZrxB1-x and FexB1-x), there was a good correlation between boron concentration and the energy-dependence of the cross sections of cold and epithermal neutrons. In the CMMR specimens, boron distribution was confirmed from the contrast difference between cold and epithermal neutrons. In the future, the results of calibration standard samples will be applied to the results of CMMR specimens. With this method, three-dimensional boron distribution will be measured, and the understanding of boride distribution 1F Unit-3 will be improved, which may be reflected in an improved SA code.


Author(s):  
Tomoko Ehara ◽  
Shuji Sumida ◽  
Tetsuaki Osafune ◽  
Eiji Hase

As shown previously, Euglena cells grown in Hutner’s medium in the dark without agitation accumulate wax as well as paramylum, and contain proplastids showing no internal structure except for a single prothylakoid existing close to the envelope. When the cells are transferred to an inorganic medium containing ammonium salt and the cell suspension is aerated in the dark, the wax was oxidatively metabolized, providing carbon materials and energy 23 for some dark processes of plastid development. Under these conditions, pyrenoid-like structures (called “pro-pyrenoids”) are formed at the sites adjacent to the prolamel larbodies (PLB) localized in the peripheral region of the proplastid. The single prothylakoid becomes paired with a newly formed prothylakoid, and a part of the paired prothylakoids is extended, with foldings, in to the “propyrenoid”. In this study, we observed a concentration of RuBisCO in the “propyrenoid” of Euglena gracilis strain Z using immunoelectron microscopy.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Wu-zhou Li ◽  
Zhi-wen Liang ◽  
Yi Cao ◽  
Ting-ting Cao ◽  
Hong Quan ◽  
...  

Abstract Background Tumor motion may compromise the accuracy of liver stereotactic radiotherapy. In order to carry out a precise planning, estimating liver tumor motion during radiotherapy has received a lot of attention. Previous approach may have difficult to deal with image data corrupted by noise. The iterative closest point (ICP) algorithm is widely used for estimating the rigid registration of three-dimensional point sets when these data were dense or corrupted. In the light of this, our study estimated the three-dimensional (3D) rigid motion of liver tumors during stereotactic liver radiotherapy using reconstructed 3D coordinates of fiducials based on the ICP algorithm. Methods Four hundred ninety-five pairs of orthogonal kilovoltage (KV) images from the CyberKnife stereo imaging system for 12 patients were used in this study. For each pair of images, the 3D coordinates of fiducial markers inside the liver were calculated via geometric derivations. The 3D coordinates were used to calculate the real-time translational and rotational motion of liver tumors around three axes via an ICP algorithm. The residual error was also investigated both with and without rotational correction. Results The translational shifts of liver tumors in left-right (LR), anterior-posterior (AP),and superior-inferior (SI) directions were 2.92 ± 1.98 mm, 5.54 ± 3.12 mm, and 16.22 ± 5.86 mm, respectively; the rotational angles in left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions were 3.95° ± 3.08°, 4.93° ± 2.90°, and 4.09° ± 1.99°, respectively. Rotational correction decreased 3D fiducial displacement from 1.19 ± 0.35 mm to 0.65 ± 0.24 mm (P<0.001). Conclusions The maximum translational movement occurred in the SI direction. Rotational correction decreased fiducial displacements and increased tumor tracking accuracy.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Hayami Nishiwaki ◽  
Takamoto Okudaira ◽  
Kazuhiko Ishii ◽  
Muneki Mitamura

AbstractThe geometries (i.e., dip angles) of active faults from the surface to the seismogenic zone are the most important factors used to evaluate earthquake ground motion, which is crucial for seismic hazard assessments in urban areas. In Osaka, a metropolitan city in Japan, there are several active faults (e.g., the Uemachi and Ikoma faults), which are inferred from the topography, the attitude of active faults in surface trenches, the seismic reflection profile at shallow depths (less than 2 km), and the three-dimensional distribution of the Quaternary sedimentary layers. The Uemachi and Ikoma faults are N–S-striking fault systems with total lengths of 42 km and 38 km, respectively, with the former being located ~ 12 km west of the latter; however, the geometries of each of the active faults within the seismogenic zone are not clear. In this study, to examine the geometries of the Uemachi and Ikoma faults from the surface to the seismogenic zone, we analyze the development of the geological structures of sedimentary layers based on numerical simulations of a two-dimensional visco-elasto-plastic body under a horizontal compressive stress field, including preexisting high-strained weak zones (i.e., faults) and surface sedimentation processes, and evaluate the relationship between the observed geological structures of the Quaternary sediments (i.e., the Osaka Group) in the Osaka Plain and the model results. As a result, we propose geometries of the Uemachi and Ikoma faults from the surface to the seismogenic zone. When the friction coefficient of the faults is ~ 0.5, the dip angles of the Uemachi and Ikoma faults near the surface are ~ 30°–40° and the Uemachi fault has a downward convex curve at the bottom of the seismogenic zone, but does not converge to the Ikoma fault. Based on the analysis in this study, the dip angle of the Uemachi fault zone is estimated to be approximately 30°–40°, which is lower than that estimated in the previous studies. If the active fault has a low angle, the width of the fault plane is long, and thus the estimated seismic moment will be large.


Sign in / Sign up

Export Citation Format

Share Document