epithermal neutrons
Recently Published Documents


TOTAL DOCUMENTS

122
(FIVE YEARS 29)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Vol 2155 (1) ◽  
pp. 012032
Author(s):  
G A Kulabdullaev ◽  
A A Kim ◽  
G T Djuraeva ◽  
A F Nebesniy ◽  
G A Abdullaeva ◽  
...  

Abstract In our study, the high-sensitivity colour indicator of the absorbed dose of radiation of epithermal neutrons with energy 0 to 10 keV for dosimetry of low-energy neutrons was developed. We had been developed an indicator on the basis of the dye solution of arsenazo III and gadopentetic acid, allowing precisely define of absorbed dose in the range 2 to 103 Gy. The properties of arsenazo III as metallic indicator, which changes colour after binding of free ions of metals, were used. Colour of the indicator solution before irradiation and after it is stable enough in time at storage in the dark, at artificial illumination or at scattered sunlight. The developed indicator, consisting of a solution of arsenazo III and gadopentetic acid, allows estimating the absorbed dose of epithermal neutron irradiation with good accuracy and reduces the error of measurement related to changing colour of dye under the influence of other factors (light, temperature etc.) Dosimeter is tissue-equivalent and possesses a high-sensitivity neutron radiation due to the content of gadolinium in solution, which has great neutron capture cross-section. The developed dosimeter persists spectrophotometric characteristics after irradiaion within few weeks that allows to use it for measurement of the absorbed dose, both in real time mode and with the delayed measurement within few weeks.


2021 ◽  
Vol 25 (12) ◽  
pp. 6547-6566
Author(s):  
Daniel Rasche ◽  
Markus Köhli ◽  
Martin Schrön ◽  
Theresa Blume ◽  
Andreas Güntner

Abstract. Cosmic-ray neutron sensing (CRNS) allows for non-invasive soil moisture estimations at the field scale. The derivation of soil moisture generally relies on secondary cosmic-ray neutrons in the epithermal to fast energy ranges. Most approaches and processing techniques for observed neutron intensities are based on the assumption of homogeneous site conditions or of soil moisture patterns with correlation lengths shorter than the measurement footprint of the neutron detector. However, in view of the non-linear relationship between neutron intensities and soil moisture, it is questionable whether these assumptions are applicable. In this study, we investigated how a non-uniform soil moisture distribution within the footprint impacts the CRNS soil moisture estimation and how the combined use of epithermal and thermal neutrons can be advantageous in this case. Thermal neutrons have lower energies and a substantially smaller measurement footprint around the sensor than epithermal neutrons. Analyses using the URANOS (Ultra RApid Neutron-Only Simulation) Monte Carlo simulations to investigate the measurement footprint dynamics at a study site in northeastern Germany revealed that the thermal footprint mainly covers mineral soils in the near-field to the sensor while the epithermal footprint also covers large areas with organic soils. We found that either combining the observed thermal and epithermal neutron intensities by a rescaling method developed in this study or adjusting all parameters of the transfer function leads to an improved calibration against the reference soil moisture measurements in the near-field compared to the standard approach and using epithermal neutrons alone. We also found that the relationship between thermal and epithermal neutrons provided an indicator for footprint heterogeneity. We, therefore, suggest that the combined use of thermal and epithermal neutrons offers the potential of a spatial disaggregation of the measurement footprint in terms of near- and far-field soil moisture dynamics.


2021 ◽  
pp. 1-18
Author(s):  
Masatoshi Arai ◽  
Ken H. Andersen ◽  
Dimitri N. Argyriou ◽  
Werner Schweika ◽  
Luca Zanini ◽  
...  

The general performance of diffractometers at the first long pulse spallation source ESS, is compared with their counterparts at J-PARC, a short pulse spallation source. The difference in the inherent pulse structure of these neutron sources presents opportunities for new concepts for instrumentation, where performance does not scale simply with source power. The article describes advantages and disadvantages of those diffractometers, adapting to the very different source characteristics. We find that the two sources offer comparable performance in flux and resolution when operating in high-resolution mode. ESS offers significant advantages in tunability and flexibility, notably in the ability to relax resolution in order to increase flux for a given experiment. The slow repetition rate of ESS favors long instruments. On the other hand, J-PARC instruments perform very well in spite of the lower source power and allow better access to epithermal neutrons, of particular interest for PDF analysis of diffraction data.


2021 ◽  
pp. 110018
Author(s):  
Diego Medina-Castro ◽  
Hector Rene Vega-Carrillo ◽  
Juan Galicia-Aragón ◽  
Tzinnia Gabriela Soto-Bernal ◽  
Antonio Baltazar-Raigosa

2021 ◽  
Vol 10 (1) ◽  
pp. 1-10
Author(s):  
Thiep Tran Duc ◽  
An Truong Thi ◽  
Hue Bui Minh ◽  
Cuong Phan Viet ◽  
Ha Nguyen Hong ◽  
...  

The isomeric ratio (IR) of isomeric pair 109m,gPd, produced in 110Pd(γ, n)109m,gCd reaction and 108Pd(n, γ)109m,gPd neutron capture reactions, induced by thermal, epithermal and mixed thermal-epithermal neutrons have been determined. The off-line activation technique using a spectroscopic system consisting of a HPGe semiconductor detector with high energy resolution and a PC based 8192 channel analyzer (CANBERRA) was applied. The investigated samples were prepared from the 99.99 % purity PdO and irradiated at the electron accelerator Microtron MT-25 of the Joint Institute for Nuclear Research Dubna, Russia. The data analysis and necessary corrections were made to upgrade the precision of the experimental method. The obtained results were discussed, compared and combined with those from other authors to point out the role of the reaction channels in nuclear reactions.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 722
Author(s):  
Natalya V. Gubanova ◽  
Alphiya R. Tsygankova ◽  
Evgenii L. Zavjalov ◽  
Alexander V. Romashchenko ◽  
Yuriy L. Orlov

Boron neutron capture therapy (BNCT) is based on the ability of the boron-10 (10B) isotope to capture epithermal neutrons, as a result of which the isotope becomes unstable and decays into kinetically active elements that destroy cells where the nuclear reaction has occurred. The boron-carrying compounds—L-para-boronophenylalanine (BPA) and sodium mercaptoundecahydro-closo-dodecaborate (BSH)—have low toxicity and, today, are the only representatives of such compounds approved for clinical trials. For the effectiveness and safety of BNCT, a low boron content in normal tissues and substantially higher content in tumor tissue are required. This study evaluated the boron concentration in intracranial grafts of human glioma U87MG cells and normal tissues of the brain and other organs of mice at 1, 2.5 and 5 h after administration of the boron-carrying compounds. A detailed statistical analysis of the boron biodistribution dynamics was performed to find a ‘window of opportunity’ for BNCT. The data demonstrate variations in boron accumulation in different tissues depending on the compound used, as well as significant inter-animal variation. The protocol of administration of BPA and BSH compounds used did not allow achieving the parameters necessary for the successful course of BNCT in a glioma orthotopic xenograft mouse model.


2021 ◽  
Author(s):  
Daniel Rasche ◽  
Markus Köhli ◽  
Martin Schrön ◽  
Theresa Blume ◽  
Andreas Güntner

Abstract. Cosmic-Ray Neutron Sensing (CRNS) allows for non-invasive soil moisture measurements at the field scale. The derivation of soil moisture generally relies on secondary cosmic-ray neutrons in the epithermal-to-fast energy range. Most approaches and processing techniques for observed neutron intensities are based on the assumption of homogeneous site conditions within the measurement footprint of the neutron detector. In this study we investigated how a non-uniform soil moisture distribution within the footprint impacts the CRNS soil moisture estimation and how the combined use of epithermal and thermal neutrons can be advantageous in this case. Thermal neutrons have lower energies and a substantially smaller measurement footprint around the sensor than epithermal neutrons. Analyses using URANOS neutron Monte-Carlo simulations to investigate measurement footprint dynamics at a study site in north-eastern Germany revealed that the thermal footprint mainly covers mineral soils in the near-field to the sensor while the epithermal footprint also covers large areas with organic soils. We found that either combining the observed thermal and epithermal neutron intensities by a rescaling method developed in this study, or adjusting all parameters of the transfer function leads to an improved calibration against reference soil moisture measurements in the near field compared to the standard approach and using epithermal neutrons alone. We also found that the relationship between thermal and epithermal neutrons provided an indicator for footprint heterogeneity. We therefore suggest that the combined use of thermal and epithermal neutrons offers the potential of a spatial discretization of the measurement footprint in terms of near and far field soil moisture dynamics.


2021 ◽  
Author(s):  
Maxim Mokrousov ◽  
Dmitriy Golovin ◽  
Igor Mitrofanov ◽  
Alexander Kozyrev ◽  
Maxim Litvak ◽  
...  

<p>The series of ADRON instruments are developed in Russian Space Research Institute (IKI) for Russian Luna-25, Luna-27 and Roscosmos-ESA ExoMars-2022 landers. The main goal of this experiment is studying of elemental composition of planetary sub-surface down to 1 m. Using pulsing neutron generator and observing albedo after-pulse neutron and gamma-ray emission from the soil, one can detect layering stratification of hydrogen and mass fractions of other elements.</p><p>Both instruments consist of two blocks: pulsing neutron generator (PNG) with 14 MeV neutron pulse duration around 1 microsecond, and detector block with neutrons and gamma-ray detectors based on <sup>3</sup>He counters and CeBr<sub>3</sub> (LaBr3) scintillator, respectively. <sup>3</sup>He counters allow to detect thermal and epithermal neutrons, which are the most sensitive to hydrogen in underlying soil, and gamma-ray detector allows to detect nuclear lines at the energy range from 200 keV up to 10 MeV. Readout and digital electronics is designed to minimize the dead-time of signal processing. It allows to accumulate the after-pulse profiles of emission of neutrons and gamma-rays with very good time (from 2 microsecond) and spectral resolutions (about 4 % for 662 keV).</p><p>The results of laboratory measurements and numerical simulations for ADRON units will be presented for post-pulse emission of neutrons and gamma rays from the planetary soil with different water content, elementary composition and layering structure.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document