Dynamic Morphing of Elastic Plates via Principal Parametric Resonance

2021 ◽  
Author(s):  
Andrea Arena ◽  
Walter Lacarbonara
2018 ◽  
Vol 13 (9) ◽  
Author(s):  
Astitva Tripathi ◽  
Anil K. Bajaj

Electrostriction is a recent actuation mechanism which is being explored for a variety of new micro- and millimeter scale devices along with macroscale applications such as artificial muscles. The general characteristics of these materials and the nature of actuation lend itself to possible production of very rich nonlinear dynamic behavior. In this work, principal parametric resonance of the second mode in in-plane vibrations of appropriately designed electrostrictive plates is investigated. The plates are made of an electrostrictive polymer whose mechanical response can be approximated by Mooney Rivlin model, and the induced strain is assumed to have quadratic dependence on the applied electric field. A finite element model (FEM) formulation is used to develop mode shapes of the linearized structure whose lowest two natural frequencies are designed to be close to be in 1:2 ratio. Using these two structural modes and the complete Lagrangian, a nonlinear two-mode model of the electrostrictive plate structure is developed. Application of a harmonic electric field results in in-plane parametric oscillations. The nonlinear response of the structure is studied using averaging on the two-mode model. The structure exhibits 1:2 internal resonance and large amplitude vibrations through the route of parametric excitation. The principal parametric resonance of the second mode is investigated in detail, and the time response of the averaged system is also computed at few frequencies to demonstrate stability of branches. Some results for the case of principal parametric resonance of the first mode are also presented.


Author(s):  
Li-Qun Chen

The steady-state transverse responses and the stability of an axially accelerating viscoelastic string are investigated. The governing equation is derived from the Eulerian equation of motion of a continuum, which leads to the Mote model for transverse motion. The Kirchhoff model is derived from the Mote model by replacing the tension with the averaged tension over the string. The method of multiple scales is applied to the two models in the case of principal parametric resonance. Closed-form expressions of the amplitudes and the existence conditions of steady-state periodical responses are presented. The Lyapunov linearized stability theory is employed to demonstrate that the first (second) non-trivial steady-state response is always stable (unstable). Numerical calculations show that the two models are qualitatively the same, but quantitatively different. Numerical results are also presented to highlight the effects of the mean axial speed, the axial-speed fluctuation amplitude, and the viscoelastic parameters.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Qi-Chang Zhang ◽  
Su-Yu Cui ◽  
Zhi Fu ◽  
Jian-Xin Han

The cable-stayed bridge is widely used due to its strong spanning capacity and navigability. However, flexible cables parametrically resonated by external excitation may result in instability or even damage to the bridge. To prevent such undesirable resonance, this paper discusses an in-plane modal interaction-induced parametric resonance of the stayed cable excited by the bridge deck vibration via nonlinear dynamic analysis. Based on the nonlinear distributed model, two modal governing equations of the cable are established via the Galerkin method. A certain working condition, when the external excitation frequency is close to the second-order natural frequency of the stay cable while nearly twice the first-order natural frequency, is theoretically and experimentally investigated. Specifically, the frequency response equations are obtained by the multiscale method, and the stability of solutions is examined through the Routh Hurwitz criterion. Theoretical and experimental results show that bridge deck vibration can induce not only the primary and superharmonic resonance of the cable but also the principal parametric resonance. Parametric resonance-induced bifurcations are also observed in the system. Particularly, the energy exchange from second-order primary resonance to first-order principal parametric resonance is found, which can induce the parametric resonance with the response amplitude one to three times higher than that of the primary resonance. This paper also validates the superiority of the present modal interaction model over the traditional single-mode model in practical engineering applications.


Author(s):  
Li-Qun Chen

The steady-state transverse responses and the stability of an axially accelerating viscoelastic string are investigated. The governing equation is derived from the Eulerian equation of motion of a continuum, which leads to the Mote model for transverse motion. The Kirchhoff model is derived from the Mote model by replacing the tension with the averaged tension over the string. The method of multiple scales is applied to the two models in the case of principal parametric resonance. Closed-form expressions of the amplitudes and the existence conditions of steady-state periodical responses are presented. The Lyapunov linearized stability theory is employed to demonstrate that the first (second) nontrivial steady-state response is always stable (unstable). Numerical calculations show that the two models are qualitatively the same, but quantitatively different. Numerical results are also presented to highlight the effects of the mean axial speed, the axial speed fluctuation amplitude, and the viscoelastic parameters.


Author(s):  
U H Hegazy ◽  
Y A Amer

The method of multiple scales is applied to investigate the non-linear oscillations and dynamic behaviour of a rotor-active magnetic bearings (AMBs) system, with time-varying stiffness. The rotor-AMB model is a two-degree-of-freedom non-linear system with quadratic and cubic non-linearities and parametric excitation in the horizontal and vertical directions. The case of principal parametric resonance is considered and examined. The steady-state response and the stability of the system at the principal parametric resonance case for various parameters are studied numerically, applying the frequency response function method. It is shown that the system exhibits many typical non-linear behaviours including multiple-valued solutions, jump phenomenon, hardening and softening non-linearity. Different effects of the system parameters on the non-linear response of the rotor are also reported. Results are compared with available published work.


1991 ◽  
Vol 113 (2) ◽  
pp. 336-338 ◽  
Author(s):  
J. Lieh ◽  
I. Haque

This paper presents a study of the parametrically excited behavior of passenger and freight vehicles on tangent track due to harmonic variations in conicity using linear models. The effect of primary and secondary stiffnesses on parametric excitation is also studied. Floquet theory is used to find the stability boundaries. The results show that wavelengths associated with conicity variation that are in the vicinity of half the kinematic wavelengths of the vehicles can lead to significant reductions in critical speeds. Results also show that the primary and warp stiffnesses can affect the severity of principal parametric resonance depending on the vehicle models and magnitude of stiffnesses chosen.


Sign in / Sign up

Export Citation Format

Share Document