The Material Testing of Nanoparticle Doped 3D Printed ABS Strain Gages for\x0bResisitance and Stiffness

2021 ◽  
Author(s):  
Cameron Turner ◽  
Sara Damas
2018 ◽  
Vol 210 ◽  
pp. 04049 ◽  
Author(s):  
Ales Mizera ◽  
Martin Bednarik ◽  
Martin Mizera ◽  
Katarina Tomanova ◽  
Martin Mohorko

To obtain the deeper knowledge about the mechanical behaviour of 3D printed polymeric materials it is necessary to study the material properties from the beginning to the end. The commonly processed polymeric materials (via injection moulding etc.) are already deeply studied and evaluated, but 3D printed specimens in the various orientation build are not yet. In this study the tensile impact test specimens were fabricated via a desktop material extrusion 3D printer Zortrax M200 processing ABS and HIPS in build orientation XY. The 3D printed tensile impact test specimens were examined to compare the effect of layer thickness. Impact pendulum Zwick HIT50P was used for tensile impact tests according to ISO 8256 standard. Optical microscopy was utilized to perform fractography on impact test specimens to explore the effect of the layer thickness on the fracture surface morphology of the failed specimens. This study demonstrates the need for material testing for specific processing as additive manufacturing technologies.


2021 ◽  
Author(s):  
Ruthanna McMurtrie ◽  
Re'naijah Purvis ◽  
Kevin Shen ◽  
Ian McGorrey ◽  
Nimai Nangunoori ◽  
...  

2021 ◽  
Vol 1208 (1) ◽  
pp. 012019
Author(s):  
Adi Pandzic ◽  
Damir Hodzic

Abstract One of the advantages provided by fused deposition modelling (FDM) 3D printing technology is the manufacturing of product materials with infill structure, which provides advantages such as reduced production time, product weight and even the final price. In this paper, the tensile mechanical properties, tensile strength and elastic modulus, of PLA, Tough PLA and PC FDM 3D printed materials with the infill structure were analysed and compared. Also, the influence of infill pattern on tensile properties was analysed. Material testing were performed according to ISO 527-2 standard. All results are statistically analysed and results showed that infill pattern have influence on tensile mechanical properties for all three materials.


Author(s):  
Sara M. Damas ◽  
Cameron J. Turner

Abstract Additive manufacturing methods are becoming more prominent in the world of design and manufacturing due to their reduction of material waste versus traditional machining methods such as milling. The technology to 3D print has been around since the 1970’s. In today’s present time, we now can multi-material 3D print, however. even though we have the technology for multi-material 3D printing, standards in this field are severely lacking. Research on multi-material 3D printing and/or the combination of 3D printing filaments combined with nanoparticles is needed. One of the most common methods of 3D printing is fused deposition modeling (FDM). In this research, FDM was used to dope Acrylonitrile Butadiene Styrene (ABS), to introduce conductive properties for strain measurements. The researchers in this paper used N-Methyl-2-Pyrrolidinone (NMP) to bind the selected nanoparticles. In the first experiment the researchers tested the conductivity of the strain gages, while in the next experiment they studied the effect the various nanoparticles had on the stiffness of the 3D printed ABS strain gages. This extensive and detailed study concluded several points. First, nickel nanoparticles consistently yields the least amount of resistance. Second, multiple binder doped nanoparticle layers yield the lowest resistance. Third, NMP, does indeed improve the performance of the nanoparticles. Finally, the research demonstrated that the various nanoparticles used, when bound increased the stiffness of the ABS strain gages.


2016 ◽  
Vol 77 (S 02) ◽  
Author(s):  
Hassan Othman ◽  
Sam Evans ◽  
Daniel Morris ◽  
Saty Bhatia ◽  
Caroline Hayhurst

2019 ◽  
Author(s):  
Avital Perry ◽  
Soliman Oushy ◽  
Lucas Carlstrom ◽  
Christopher Graffeo ◽  
David Daniels ◽  
...  

1982 ◽  
Vol 10 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. Kumar ◽  
C. W. Bert

Abstract Unidirectional cord-rubber specimens in the form of tensile coupons and sandwich beams were used. Using specimens with the cords oriented at 0°, 45°, and 90° to the loading direction and appropriate data reduction, we were able to obtain complete characterization for the in-plane stress-strain response of single-ply, unidirectional cord-rubber composites. All strains were measured by means of liquid mercury strain gages, for which the nonlinear strain response characteristic was obtained by calibration. Stress-strain data were obtained for the cases of both cord tension and cord compression. Materials investigated were aramid-rubber, polyester-rubber, and steel-rubber.


Sign in / Sign up

Export Citation Format

Share Document