Numerical Analysis on Conceptual Design of Swirl Stabilized Fuel Nozzle for Micro Gas Turbine Using Converge\u2122 Cfd

2021 ◽  
Author(s):  
Jonghyun Kim ◽  
Jungsoo Park
2018 ◽  
Vol 2018.55 (0) ◽  
pp. D031
Author(s):  
Kazunori YAHATA ◽  
Koji MATSUBARA ◽  
Hiroyuki KOSHIKIZAWA ◽  
Kazuyuki ABE

Author(s):  
M. Cadorin ◽  
M. Pinelli ◽  
A. Vaccari ◽  
R. Calabria ◽  
F. Chiariello ◽  
...  

In recent years, the interest in the research on energy production systems fed by biofuels has increased. Gaseous fuels obtained through biomass conversion processes such as gasification, pyrolysis and pyrogasification are generally defined as synthesis gas (syngas). The use of synthesis gas in small-size energy systems, such as those used for distributed micro-cogeneration, has not yet reached a level of technological maturity that could allow a large market diffusion. For this reason, further analyses (both experimental and numerical) have to be carried out to allow these technologies to achieve performance and reliability typical of established technologies based on traditional fuels. In this paper, a numerical analysis of a combustor of a 100-kW micro gas turbine fed by natural gas and biomass-derived synthesis gas is presented. The work has been developed in the framework of a collaboration between the Engineering Department of the University of Ferrara, the Istituto Motori - CNR (Napoli), and Turbec S.p A. of Corporeno di Cento (FE). The main features of the micro gas turbine Turbec T100, located at the Istituto Motori - CNR, are firstly described. A decompression and distribution system allows the feeding of the micro gas turbine with gaseous fuels characterized by different compositions. Moreover, a system of remote monitoring and control together with a data transfer system has been developed in order to set the operative parameters of the machine. The results of the tests performed under different operating conditions are then presented. Subsequently, the paper presents the numerical analysis of a model of the micro gas turbine combustor. The combustor model is validated against manufacturer performance data and experimental data with respect to steady state performance, i.e., average outlet temperature and emission levels. A sensitivity analysis on the model capability to simulate different operating conditions is then performed. The combustor model is used to simulate the combustion of a syngas, composed of different ratios of hydrogen, carbon monoxide, methane, carbon dioxide and water. The results in terms of flame displacement, temperature and emission distribution and values are analyzed and compared to the natural gas simulations. Finally, some simple modifications to the combustion chamber are proposed and simulated both with natural gas and syngas feeding.


2019 ◽  
Vol 2019.94 (0) ◽  
pp. 608
Author(s):  
Yuri Hosokawa ◽  
Hiroyuki Asada ◽  
Yoshifumi Ogami

Author(s):  
Paolo Laranci ◽  
Edoardo Bursi ◽  
Francesco Fantozzi

A CFD analysis was carried out to study the performance of a modified combustion chamber of a micro gas turbine with the objective to change its fuelling from natural gas to biomass pyrolysis gas. The micro gas turbine is a component of a pilot IPRP (Integrated Regenerated Pyrolysis Plant), a distributed energy system, based on a rotary kiln reactor for the pyrolysis of biomass. This paper describes the combustion process occurring inside the combustion chamber of the micro gas turbine. In particular, a new, revised kinetic scheme was implemented in the RANS analysis to better reproduce CO oxidation and flue gases temperature, for both methane and pyrolysis gas combustion; further investigation was undertaken on NOx formation mechanisms, which are now modeled through a non-adiabatic PPDF approach, also taking into account the effects of turbulence interaction. CFD simulations for natural gas and pyrolysis gas combustion were performed for two different annular rich-quench-lean combustion chamber configurations, one with the original design for natural gas and one with a modified design optimized for syngas, in order to quantify the advantage of using a dedicated design. Furthermore, through the numerical analysis, the hot spots of the combustor have been identified and monitored the to study the possible effects of material corrosion due to high temperatures.


Author(s):  
M. Cadorin ◽  
M. Pinelli ◽  
A. Vaccari ◽  
R. Calabria ◽  
F. Chiariello ◽  
...  

In recent years, the interest in the research on energy production systems fed by biofuels is increased. Gaseous fuels obtained through biomass conversion processes such as gasification, pyrolysis and pyrogasification are generally defined as synthesis gas. The use of synthesis gas in small-size energy systems, such as those used for distributed micro-cogeneration, has not yet reached a level of technological maturity that could allow a large market diffusion. For this reason, further analyses (both experimental and numerical) have to be carried out to allow these technologies to achieve performance and reliability typical of established technologies based on traditional fuels. In this paper, an experimental and numerical analysis of a combustor of a 100-kW Micro Gas Turbine fed by synthesis gas is presented. The work has been developed in the framework of a collaboration among the Department of Engineering of the University of Ferrara, the Istituto Motori CNR of Naples, and Turbec SpA of Cento (FE). The main features of the microturbine MGT Turbec T100, located at the Istituto Motori CNR of Naples, are firstly described. A decompression and distribution system allows to feed the MGT with gaseous fuels characterized by different compositions. Moreover, a system of remote monitoring and control together with a data transfer system have been developed in order to set the operative parameters of the machine for the current test. The results of the tests performed under different operating conditions are then presented. Subsequently, the paper presents the numerical analysis of a model of the MGT combustor. The combustor model is validated against manufacturer performance data and experimental data with respect to steady state performance, i.e. average outlet temperature, emission levels, pressure drops. Then, a syngas, composed by different ratios of hydrogen, carbon monoxide, methane, carbon dioxide and water, is simulated and the results analyzed.


Sign in / Sign up

Export Citation Format

Share Document