Rolling Bearing Parametric Excitation of a Jeffcott Rotor System

2021 ◽  
Author(s):  
GHASEM TEHRANI GHANNAD ◽  
CHIARA GASTALDI ◽  
Teresa Berruti
Author(s):  
Ghasem Ghannad Tehrani ◽  
Chiara Gastaldi ◽  
Teresa Maria Berruti

Abstract Rolling bearings are still widely used in aeroengines. Whenever rotors are modeled, rolling bearing components are typically modeled using springs. In simpler models, this spring is considered to have a constant mean value. However, the rolling bearing stiffness changes with time due to the positions of the balls with respect to the load on the bearing, thus giving rise to an internal excitation known as Parametric Excitation. Due to this parametric excitation, the rotor-bearings system may become unstable for specific combinations of boundary conditions (e.g. rotational speed) and system characteristics (rotor flexibility etc.). Being able to identify these instability regions at a glance is an important tool for the designer, as it allows to discard since the early design stages those configurations which may lead to catastrophic failures. In this paper, a Jeffcott rotor supported and excited by such rolling bearings is used as a demonstrator. In the first step, the expression for the time–varying stiffness of the bearings is analytically derived by applying the Hertzian Contact Theory. Then, the equations of motion of the complete system are provided. In this study, the Harmonic Balance Method (HBM) is used to as an approximate procedure to draw a stability map, thus dividing the input parameter space, i.e. rotational speed and rotor physical characteristics, into stable and unstable regions.


2019 ◽  
Vol 24 (2) ◽  
pp. 284-302 ◽  
Author(s):  
Nasser A. Saeed ◽  
Mostafa Eissa

This work focuses on the dynamical behaviour and bifurcations of a vertically supported Jeffcott rotor system having a transverse crack and nonlinear stiffness characteristics at the primary, sub-harmonic, and super-harmonic resonance cases. The nonlinear restoring force due to the bearing-clearance, the crack breathing, the disc eccentricity, and the orientation angle between the crack and imbalance direction are considered in the system model. The equations governing the system motion are derived and solved analytically by applying the Multiple Scales Perturbation Technique (MSPT). The slow-flow modulating equations are obtained and the spinning speed response curve is plotted. The whirling orbit and amplitude spectrum are constructed in the three considered resonance cases. The acquired results provide a better understanding of the main reasons of the super- and sub-harmonic resonance excitations. In additions, we concluded that the suitable resonance case that can be used for early detections of the cracks in the rotating shafts is the sub-harmonic resonance case. Finally, the obtained results are confirmed numerically and compared with the work published in the literature


Author(s):  
Yifu Zhou ◽  
Zhong Luo ◽  
Zifang Bian ◽  
Fei Wang

As sophisticated mechanical equipment, the rotor system of aero-engine is assembled by various parts; bolted flange joints are one of the essential ways of joints. Aiming at the analysis of the nonlinear vibration characteristics of the rotor-bearing system with bolted flange joints, in this paper, a finite element modeling method for a rotor-bearing system with bolted flange joints is proposed, and an incremental harmonic balance method combined with arc length continuation is proposed to solve the dynamic solution of the rotor system. In order to solve the rotor system with rolling bearing nonlinearity, the alternating frequency/time-domain process of the rolling bearing element is deduced. Compared with the conventional harmonic balance method and the time-domain method, this method has the characteristics of fast convergence and high computational efficiency; solving the rotor system with nonlinear bearing force; overcome the shortcoming that the frequency–response curve of the system is too sharp to continue solving. By using this method, the influence of bearing clearance and stiffness on vibration characteristics of the rotor system with bolted flange joints is studied. The evolution law of the state of the rotor system with bolt flange is investigated through numerical simulation and experimental data. The results indicated that the modeling and solving method proposed in this paper could accurately solve the rotor-bearing system with bolted flange joints and analyze its vibration characteristics.


Author(s):  
Yeyin Xu ◽  
Albert C. J. Luo

Abstract In this paper, the semi-analytical solutions of period-1 and period-2 motions in a nonlinear Jeffcott rotor system are presented through the discrete mapping method. The periodic motions in the nonlinear Jeffcott rotor system are obtained through specific mapping structures with a certain accuracy. A bifurcation tree of period-1 to period-2 motion is achieved, and the corresponding stability and bifurcations of periodic motions are analyzed. For verification of semi-analytical solutions, numerical simulations are carried out by the mid-point scheme.


Author(s):  
Yeyin Xu ◽  
Albert C.J. Luo

Abstract In this paper, a bifurcation tree of period-1 to period-8 motions in a nonlinear Jeffcott rotor system is obtained through the discrete mapping method. The bifurcations and stability of periodic motions on the bifurcation tree are discussed. The quasi-periodic motions on the bifurcation tree are caused by two (2) Neimark bifurcations of period-1 motions, one (1) Neimark bifurcation of period-2 motions and four (4) Neimark bifurcations of period-4 motions. The specific quasi-periodic motions are mainly based on the skeleton of the corresponding periodic motions. One stable and one unstable period-doubling bifurcations exist for the period-1, period-2 and period-4 motions. The unstable period-doubling bifurcation is from an unstable period-m motion to an unstable period-2m motion, and the unstable period-m motion becomes stable. Such an unstable period-doubling bifurcation is the 3rd source pitchfork bifurcation. Periodic motions on the bifurcation tree are simulated numerically, and the corresponding harmonic amplitudes and phases are presented for harmonic effects on periodic motions in the nonlinear Jeffcott rotor system. Such a study gives a complete picture of periodic and quasi-periodic motions in the nonlinear Jeffcott rotor system in the specific parameter range. One can follow the similar procedure to work out the other bifurcation trees in the nonlinear Jeffcott rotor systems.


2020 ◽  
Vol 30 (05) ◽  
pp. 2050077 ◽  
Author(s):  
Yeyin Xu ◽  
Zhaobo Chen ◽  
Albert C. J. Luo

In this paper, a bifurcation tree of period-1 motion to chaos in a flexible nonlinear rotor system is presented through period-1 to period-8 motions. Stable and unstable periodic motions on the bifurcation tree in the flexible rotor system are achieved semi-analytically, and the corresponding stability and bifurcation of the periodic motions are analyzed by eigenvalue analysis. On the bifurcation tree, the appearance and vanishing of jumping phenomena of periodic motions are generated by saddle-node bifurcations, and quasi-periodic motions are induced by Neimark bifurcations. Period-doubling bifurcations of periodic motions are for developing cascaded bifurcation trees, however, the birth of new periodic motions are based on the saddle-node bifurcation. For a better understanding of periodic motions on the bifurcation tree, nonlinear harmonic amplitude characteristics of periodic motions are presented. Numerical simulations of periodic motions are performed for the verification of semi-analytical predictions. From such a study, nonlinear Jeffcott rotor possesses complex periodic motions. Such results can help one detect and control complex motions in rotor systems for industry.


Sign in / Sign up

Export Citation Format

Share Document