A general dynamic model coupled with EFEM and DBM of rolling bearing-rotor system

2019 ◽  
Vol 134 ◽  
pp. 106322 ◽  
Author(s):  
Yamin Li ◽  
Hongrui Cao ◽  
Kai Tang
2021 ◽  
Author(s):  
GHASEM TEHRANI GHANNAD ◽  
CHIARA GASTALDI ◽  
Teresa Berruti

2012 ◽  
Vol 460 ◽  
pp. 160-164 ◽  
Author(s):  
Song He Zhang ◽  
Yue Gang Luo ◽  
Bin Wu ◽  
Bang Chun Wen

The dynamic model of the three-span rotor-bearing system with rub-impact fault was set up. The influence to nonlinear dynamics behaviors of the rotor-bearing system that induced by rub-impact of one disc, two discs and three discs were numerically studied. The main influence of the rotor system response by the rub-impact faults are in the supercritical rotate speed. There are mutations of amplitudes in the responses of second and third spans in supercritical rotate speed when rub-impact with one disc, and there are chaotic windows in the response of first span, and jumping changes in second and third spans when rub-impact with two or three discs.


2014 ◽  
Vol 11 (03) ◽  
pp. 1450020 ◽  
Author(s):  
John Fasoulas ◽  
Michael Sfakiotakis

This paper presents a general dynamic model that describes the two-dimensional grasp by two robotic fingers with soft fingertips. We derive the system's kinematics and dynamics by incorporating rolling constraints that depend on the deformation and on the rolling distance characteristics of the fingertips' material. We analyze the grasp stability at equilibrium, and conclude that the rolling properties of the fingertips can play an important role in grasp stability, especially when the width of the grasped object is small compared to the radius of the tips. Subsequently, a controller, which is based on the fingertips' rolling properties, is proposed for stable grasping concurrent with object orientation control. We evaluate the dynamic model under the proposed control law by simulations and experiments that make use of two different types of soft fingertip materials, through which it is confirmed that the dynamic model can successfully capture the effect of the fingertips' deformation and their rolling distance characteristics. Finally, we use the dynamic model to demonstrate by simulations the significance of the fingertips' rolling properties in grasping thin objects.


Author(s):  
Yifu Zhou ◽  
Zhong Luo ◽  
Zifang Bian ◽  
Fei Wang

As sophisticated mechanical equipment, the rotor system of aero-engine is assembled by various parts; bolted flange joints are one of the essential ways of joints. Aiming at the analysis of the nonlinear vibration characteristics of the rotor-bearing system with bolted flange joints, in this paper, a finite element modeling method for a rotor-bearing system with bolted flange joints is proposed, and an incremental harmonic balance method combined with arc length continuation is proposed to solve the dynamic solution of the rotor system. In order to solve the rotor system with rolling bearing nonlinearity, the alternating frequency/time-domain process of the rolling bearing element is deduced. Compared with the conventional harmonic balance method and the time-domain method, this method has the characteristics of fast convergence and high computational efficiency; solving the rotor system with nonlinear bearing force; overcome the shortcoming that the frequency–response curve of the system is too sharp to continue solving. By using this method, the influence of bearing clearance and stiffness on vibration characteristics of the rotor system with bolted flange joints is studied. The evolution law of the state of the rotor system with bolt flange is investigated through numerical simulation and experimental data. The results indicated that the modeling and solving method proposed in this paper could accurately solve the rotor-bearing system with bolted flange joints and analyze its vibration characteristics.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Mansour Karkoub

The work presented here deals with the control of a flexible rotor system using the μ-synthesis control technique. This technique allows for the inclusion of modeling errors in the control design process in terms of uncertainty weights. The dynamic model of the rotor system, which includes discontinuous friction, is highly nonlinear and has to be linearized around an operating point in order to use μ-synthesis. The difference between the linear and nonlinear models is characterized in terms of uncertainty weights and included in the control design process. The designed controller is robust to uncertainty in the dynamic model, spillover, actuator uncertainty, and noise. The theoretical findings of the μ-synthesis control design are validated through simulations and the results are presented and discussed here.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Wenbing Tu ◽  
Ya Luo ◽  
Wennian Yu

Abstract A nonlinear dynamic model is proposed to investigate the dynamic interactions between the rolling element and cage under rotational speed fluctuation conditions. Discontinuous Hertz contact between the rolling element and the cage and lubrication and interactions between rolling elements and raceways are considered. The dynamic model is verified by comparing simulation result with the published experimental data. Based on this model, the interaction forces and the contact positions between the rolling element and the cage with and without the rotational speed fluctuation are analyzed. The effects of fluctuation amplitude, fluctuation frequency, and cage pocket clearance on the interaction forces between the rolling element and the cage are also investigated. The results show that the fluctuation of the rotational speed and the cage pocket clearance significantly affects the interaction forces between the rolling element and the cage.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1336
Author(s):  
Wei Fan ◽  
Hong Lu ◽  
Yongquan Zhang ◽  
Xiangang Su

The dynamic vibration of the gear coupling-rotor system (GCRS) caused by misalignment is an important factor of low frequency vibration and noise radiation of the naval marine. The axial misalignment of gear coupling is inevitable owing to mass eccentricity, and is unconstrained in axial direction at high-speed operation. Therefore, the dynamic model of GCRS is proposed, considering gear-coupling misalignment and contact force in this paper. The whole motion differential equation of GCRS is established based on the finite element method. Moreover, the numerical calculation method of meshing force, considering the uniform distribution load on contact surface, is presented, and the mathematical predictive time–frequency characteristics are analyzed by the Newmark stepwise integral approach. Finally, a reduced-scale application of the propulsion shaft system is utilized to validate the effectiveness of the proposed dynamic model. For the sensibility to low-frequency vibration, the natural frequencies and vibration modes of GCRS are analyzed through the processing and analysis of acceleration signal. The experimental dynamic response and main components of vibration are respectively consistent with mathematical results, which demonstrate the effectiveness of the proposed dynamic model of GCRS with misalignment. Furthermore, it also shows that the proposed finite element analysis and calculation method are suitable for complex shafting, providing a novel thought for dynamic analysis of the propeller–shaft–hull coupled system of marine.


Sign in / Sign up

Export Citation Format

Share Document