Nonlinear vibration characteristics of the rotor bearing system with bolted flange joints

Author(s):  
Yifu Zhou ◽  
Zhong Luo ◽  
Zifang Bian ◽  
Fei Wang

As sophisticated mechanical equipment, the rotor system of aero-engine is assembled by various parts; bolted flange joints are one of the essential ways of joints. Aiming at the analysis of the nonlinear vibration characteristics of the rotor-bearing system with bolted flange joints, in this paper, a finite element modeling method for a rotor-bearing system with bolted flange joints is proposed, and an incremental harmonic balance method combined with arc length continuation is proposed to solve the dynamic solution of the rotor system. In order to solve the rotor system with rolling bearing nonlinearity, the alternating frequency/time-domain process of the rolling bearing element is deduced. Compared with the conventional harmonic balance method and the time-domain method, this method has the characteristics of fast convergence and high computational efficiency; solving the rotor system with nonlinear bearing force; overcome the shortcoming that the frequency–response curve of the system is too sharp to continue solving. By using this method, the influence of bearing clearance and stiffness on vibration characteristics of the rotor system with bolted flange joints is studied. The evolution law of the state of the rotor system with bolt flange is investigated through numerical simulation and experimental data. The results indicated that the modeling and solving method proposed in this paper could accurately solve the rotor-bearing system with bolted flange joints and analyze its vibration characteristics.

Author(s):  
Changli Liu ◽  
Yimin Zhang ◽  
Qing Kai Han ◽  
Bangchun Wen

An experimental rotor rig was developed to investigate nonlinear vibration characteristics of rotor bearing system with coupling fault of rub-impact and oil whirl. It was found that when the effect of oil film force on a rub-impact rotor system is comparatively weak, the rotor/stator rub-impact will cause the system to give rise to sub- and super-harmonic vibration components. In a rub-impact rotor system with oil whirl fault, super-harmonic vibration components were excited, when rotor/stator rub-impact happens before oil film whirl because of small rotor/stator clearance. When the rotor/stator clearance is comparatively large, the rub-impact happens after oil film whirl, and the effect of rub-impact on the rotor system will be very weak.


Author(s):  
Zhiwei Liu ◽  
Yuefang Wang

Many rotor assemblies of industrial turbomachines are supported by oil-lubricated bearings. It is well known that the operation safety of these machines is highly dependent on rotors whose stability is closely related to the whirling motion of lubricant oil. In this paper, the problem of transverse motion of rotor systems considering bearing nonlinearity is revisited. A symmetric, rigid Jeffcott rotor is modeled considering unbalanced mass and short bearing forces. A semi-analytical, seminumerical approach is presented based on the generalized harmonic balance method (GHBM) and the Newton–Raphson iteration scheme. The external load of the system is decomposed into a Fourier series with multiple harmonic loads. The amplitude and phase with respect to each harmonic load are solved iteratively. The stability of the motion response is analyzed through identification of eigenvalues at the fixed point mapped from the linearized system using harmonic amplitudes. The solutions of the present approach are compared to those from time-domain numerical integrations using the Runge–Kutta method, and they are found to be in good agreement for stable periodic motions. It is revealed through bifurcation analysis that evolution of the motion in the nonlinear rotor-bearing system is complicated. The Hopf bifurcation (HB) of synchronous vibration initiates oil whirl with varying mass eccentricity. The onset of oil whip is identified when the saddle-node bifurcation of subsynchronous vibration takes place at the critical value of parameter.


Author(s):  
Zhiwei Liu ◽  
Yuefang Wang

Many rotor assemblies of industrial turbo-machines are supported by oil-lubricated bearings. It is well known that the operation safety of these machines is highly dependent on rotors whose stability is closely related to the whirling motion of lubricant oil. In this paper, the problem of transverse motion of rotor systems considering bearing nonlinearity is revisited. A symmetric, rigid Jeffcott rotor is modeled considering unbalanced mass and short bearing forces. A semi-analytical, semi-numerical approach is presented based on the Generalized Harmonic Balance method and the Newton-Raphson iteration scheme. The external load of the system is decomposed into a Fourier series with multiple harmonic loads. The amplitude and phase with respect to each harmonic load are solved iteratively. The stability of the motion response is analyzed through identification of eigenvalues at the fixed point mapped from the linearized system using harmonic amplitudes. The solutions of the present approach are compared to the ones from time-domain numerical integrations using the Runge-Kutta method and they are found in good agreement for stable periodic motions. It is revealed through bifurcation analysis that evolution of the motion in the nonlinear rotor-bearing system is complicated. The Hopf bifurcation of synchronous vibration represents the start of the oil whirl. The phenomenon of oil whip is identified when the saddle-node bifurcation of sub-synchronous vibration takes place.


Author(s):  
Wanhui Liu ◽  
Daejong Kim ◽  
Kai Feng

This paper investigates the effect of gas foil thrust bearing (GFTB) on the rotordynamic performance of the rotor-gas foil bearing (GFB) system. A rigid rotor supported on two gas foil journal bearings (GFJB) and a pair of GFTBs is studied using a five degree of freedom (5-DOF) model. The studies were performed in both frequency domain using excitation frequency-dependent bearing coefficients (modal analyses) and non-linear analyses (time domain orbit simulations). Modal analyses were performed for both symmetrically and asymmetrically supported rotor systems. For the symmetric rotor, the modal stiffness for the conical mode increases with the axial force, while cylindrical mode is not affected. The axial force has little effects on the modal damping for both the cylindrical mode and conical mode. Thus, the natural frequency and threshold speed (stability limit) for the conical mode increases as the axial force increases, while these values for the cylindrical mode remain almost constant. For the asymmetric rotor, the modal stiffness for both the cylindrical mode and conical mode increases with the axial force, and thus both natural frequency and threshold speed increase with the axial force. Rotor lateral vibrations were also predicted using synchronous bearing coefficients (of both GFJB and GFTB) for both conical and cylindrical modes. The predicted rotor lateral responses show the critical speed increases with axial force for both cylindrical mode and conical mode. The nonlinear analysis using time-domain orbit simulation was also performed including the effect of axial force on the GFTB. The effect of axial force on the stability of the rotor system were discussed. The predicted results showed that the stability of rotor system improved as the axial force increases for Case 1 when the out of phase imbalances were added on the rotor. However, the stability of the rotor system for Case 2 not only influenced by the axial force but also influenced by how asymmetry the rotor is. For the in phase imbalances, the onset speed of subsynchronous motion decreases as axial force increases for the large asymmetric rotor bearing system and the decrement of the onset speed of subsynchronous decreases as the asymmetry of the rotor bearing system decreases. For the out of phase imbalances, the onset speed of subsynchronous motion also decreases as axial force increases for the large asymmetric rotor, but an opposite trend was shown as the asymmetry of the rotor decreases.


2009 ◽  
Vol 413-414 ◽  
pp. 599-605 ◽  
Author(s):  
Wen Xiu Lu ◽  
Fu Lei Chu

An experimental setup of rotor-bearing system is installed and vibration characteristics of the system with pedestal looseness are investigated. The pretightening bolt between the bearing house and pedestal is adjusted to simulate the pedestal looseness fault. The vibration waveforms, spectra and orbits are used to analyze the nonlinear response of the system with pedestal looseness. Different parameters, including speed, looseness gap, imbalance mass and disk position are changed to observe the nonlinear vibration characteristics. The experiments show that the system motion generally contains the 1/2X fractional harmonic component and multiple harmonic components such as 2X, 3X, etc. Under some special conditions, the pedestal looseness occurs intermittently, that is, occurs in some periods and doesn’t in other periods.


Sign in / Sign up

Export Citation Format

Share Document