How Do Water and CO 2 Impact the Stability and Emissions of the Combustion in a Micro Gas Turbine? — a Large Eddy Simulations Study

2021 ◽  
Author(s):  
Alessio Pappa ◽  
Marie Cordier ◽  
Pierre Bénard ◽  
Laurent Bricteux ◽  
Ward De Paepe
Author(s):  
Charlie Koupper ◽  
Jean Lamouroux ◽  
Stephane Richard ◽  
Gabriel Staffelbach

In a gas turbine, the combustor is feeding the turbine with hot gases at a high level of turbulence which in turns strongly enhances the heat transfer in the turbine. It is thus of primary importance to properly characterize the turbulence properties found at the exit of a combustor to design the turbine at its real thermal constraint. This being said, real engine measurements of turbulence are extremely rare if not inexistent because of the harsh environment and difficulty to implement experimental techniques that usually operate at isothermal conditions (e.g. hot wire anemometry). As a counterpart, high fidelity unsteady numerical simulations using Large Eddy Simulations (LES) are now mature enough to simulate combustion processes and turbulence within gas turbine combustors. It is thus proposed here to assess the LES methodology to qualify turbulence within a real helicopter engine combustor operating at take-off conditions. In LES, the development of turbulence is primarily driven by the level of real viscosity in the calculation, which is the sum of three contributions: laminar (temperature linked), turbulent (generated by the sub-grid scale model) and artificial (numerics dependent). In this study, the impact of the two main sources of un-desired viscosity is investigated: the mesh refinement and numerical scheme. To do so, three grids containing 11, 33 and 220 million cells for a periodic sector of the combustor are tested as well as centred second (Lax-Wendroff) and third order (TTGC) in space schemes. The turbulence properties (intensity and integral scales) are evaluated based on highly sampled instantaneous solutions and compared between the available simulations. Results show first that the duration of the simulation is important to properly capture the level of turbulence. If short simulations (a few combustor through-times) may be sufficient to evaluate the turbulence intensity, a bias up to 14% is introduced for the turbulence length scales. In terms of calculation set-up, the mesh refinement is found to have a limited influence on the turbulence properties. The numerical scheme influence on the quantities studied here is small, highlighting that the employed schemes dissipation properties are already sufficient for turbulence characterization. Finally, spatially averaged values of turbulence intensity and lengthscale at the combustor exit are almost identically predicted in all cases. However, significant variations from hub to tip are reported, which questions the pertinence to use 0-D turbulence boundary conditions for turbines. Based on the set of simulations discussed in the paper, guidelines can be derived to adequately set-up (mesh, scheme) and run (duration, acquisition frequency) a LES when turbulence evaluation is concerned. As no experimental counterpart to this study is available, the conclusions mainly aim at knowing the possible numerical bias rather than commenting on the predictivity of the approach.


Author(s):  
Zongming Yu ◽  
Yong Huang ◽  
Fang Wang

Reverse flow combustors were widely used in small and micro gas turbine engines. The wall area of this type of combustors was quite large. And there were two flow turning points in their flow-path. Thus the wall cooling and main flow dilution were two intrinsic problems for them. Apart from that, their high pressure losses and heavy weight were also two problems which seriously deteriorate the performance of the engines. Moreover, their primary hole jets on opposite walls were non-symmetrical, which would affect the stability and intensity of the recirculation flows. In order to improve the combustion performance, a new conceptual Z-flowpath combustor was proposed. The new combustor consisted of two 45 degree yawing instead of returning in the main flow-path. The flowfield of the new combustor was predicted by the commercial code FLUENT, after a validation for the flowfield in a model reverse flow combustor with previous experimental results. The prediction showed that the flowfield of the primary zone in the Z-flowpath combustor was highly symmetrical, the size and the intensity of the recirculation zone were about 10 and 2 times greater than the normal reverse flow combustor, respectively, while the pressure loss and the total area of the flame tube wall of the Z-flowpath combustor were decreased dramatically to be 69.4% and 51% of that in the reverse flow combustor, respectively.


2007 ◽  
Vol 78 (3) ◽  
pp. 035114 ◽  
Author(s):  
Timothy C. Williams ◽  
Robert W. Schefer ◽  
Joseph C. Oefelein ◽  
Christopher R. Shaddix

2021 ◽  
Author(s):  
Luis G. Bravo ◽  
Muthuvel Murugan ◽  
Anindya Ghoshal ◽  
Simon Su ◽  
Rahul Koneru ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document