Incorporating 3D Printing to Bridge Two Introductory Courses in Mechanical Engineering

2021 ◽  
Author(s):  
Onur Denizhan ◽  
Meng-Sang Chew
Author(s):  
Onur Denizhan ◽  
Meng-Sang Chew

Abstract A course in Computer Graphics using SolidWorks™ is one of the very first courses that a Mechanical Engineering major would take within the department at Lehigh University. In this course, students learn the basics of engineering graphics with a view towards engineering design. Such a course gives students an overall view of not just the mechanics of creating engineering drawings using SolidWorks, but also one of understanding the consequences of their drawings as they affect tolerances, material selection, fabrication processes as well as the viability of their designs. The very next introductory mechanical engineering course is a laboratory dealing with engineering measurements, data acquisition and testing. This article reports on the use of a 3-D printing exercise to bridge these two somewhat very different courses with different objectives, thereby giving students an early start into understanding the process of design; from a concept to its design and fabrication, and finally, testing and analysis of data. Moreover, it gives a fundamental understanding of the use of 3-D printing that many students would end up using for their Senior Design course in their senior year.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Mika Salmi

Most of the 3D printing applications of preoperative models have been focused on dental and craniomaxillofacial area. The purpose of this paper is to demonstrate the possibilities in other application areas and give examples of the current possibilities. The approach was to communicate with the surgeons with different fields about their needs related preoperative models and try to produce preoperative models that satisfy those needs. Ten different kinds of examples of possibilities were selected to be shown in this paper and aspects related imaging, 3D model reconstruction, 3D modeling, and 3D printing were presented. Examples were heart, ankle, backbone, knee, and pelvis with different processes and materials. Software types required were Osirix, 3Data Expert, and Rhinoceros. Different 3D printing processes were binder jetting and material extrusion. This paper presents a wide range of possibilities related to 3D printing of preoperative models. Surgeons should be aware of the new possibilities and in most cases help from mechanical engineering side is needed.


Author(s):  
Luiz Renato Rodrigues Carneiro ◽  
José Jean-Paul Zanlucchi de Souza Tavares

Nowadays 3D printing is a hot topic and this was specially observed during the COVID-19 pandemic. Hence, this project has the objective to present the design and implementation of a 3D printer, which fits the Mechanical Engineering Courses requisites. The founded solution follows the Delta architecture and it was called Delta MAPL. This paper will summarize all important definitions and knowledge to build a 3D printer such as, 3D printers technologies and architectures, expose the developed project involving mechanic and electric project, project cost, programming and slicer, calibration, printing parameters, and will also expose de results through implementation of the project, 3D printing tests, and also the documentation with all design parts, codes and printing parameters. Therefore, 3D printer is very useful and involving many fields of Mechanical Engineering knowledge, thus 3D printing develops not only knowledge in mechanic, electric, sensors and actuators and material properties, but also creativity and problem-solving that are so important for all engineering students.


Modern production is based on dislocation and decentralization. Production will be closer to the end-consumer in decentralized production and distribution structures. Workers (machinists) are no longer required as the machines can run unattended for a long period of time. Since Charles Hull invented additive manufacturing, 3PD got more and more attention by practitioners, especially in the field of mechanical engineering. 3D printing has accelerated strongly in recent years. As it was stated in chapter 2, the technology has come a long way from simple prototyping to fully integrated utilizations in direct manufacturing and because of its many forms of application, 3D printing is said to be one of the most significant industrial developments of this decade.


Author(s):  
Joanne Pransky

Purpose This paper is a “Q&A interview” conducted by Joanne Pransky of Industrial Robot Journal as a method to impart the combined technological, business and personal experience of a prominent, robotic industry PhD and innovator regarding his personal journey and the commercialization and challenges of bringing a technological invention to market. This paper aims to discuss these issues. Design/methodology/approach The interviewee is Dr Hod Lipson, James and Sally Scapa Professor of Innovation of Mechanical Engineering and Data Science at Columbia University. Lipson’s bio-inspired research led him to co-found four companies. In this interview, Dr Lipson shares some of his personal and business experiences of working in academia and industry. Findings Dr Lipson received his BSc in Mechanical Engineering from the Technion Israel Institute of Technology in 1989. He worked as a software developer and also served for the next five years as a Lieutenant Commander for the Israeli Navy. He then co-founded his first company, Tri-logical Technologies (an Israeli company) in 1994 before pursuing a PhD, which was awarded to him from the Technion Israel Institute of Technology in Mechanical Engineering in the fall of 1998. From 1998 to 2001, he did his postdoc research at Brandeis University, Computer Science Department, while also lecturing at MIT. Dr Lipson served as Professor of Mechanical & Aerospace Engineering and Computing & Information Science at Cornell University for 14 years and joined Columbia University as a Professor in Mechanical Engineering in 2015. From 2013 to 2015, he also served as Editor-in-Chief for the journal 3D Printing and Additive Manufacturing (3DP), published by Mary Ann Liebert Inc. Originality/value Dr Lipson’s broad spectrum and multi-decades of research has focused on self-aware and self-replicating robots. Dr Lipson directs the Creative Machines Lab which pioneers new ways for novel autonomous systems to design and make other machines, based on biological concepts. In total, his lab has graduated over 50 graduate students and over 20 PhD and Postdocs. Some of these students joined Lipson, in cofounding startups, while others went on to found their own companies. Lipson has coauthored over 300 publications that received over 20,000 citations. He has also coauthored the award-winning book Fabricated: The New World of 3D Printing and the book Driverless: Intelligent Cars and the Road Ahead. Forbes magazine named him one of the “World's Most Powerful Data Scientists”. His TED Talk on self-aware machines is one of the most viewed presentations on AI and robotics.


Author(s):  
Christopher Billings ◽  
Zahed Siddique ◽  
Yingtao Liu

Abstract This paper presents an undergraduate research project developed to enhance mechanical engineering education at the University of Oklahoma. Selective Laser Sintering (SLS) is a promising additive manufacturing method for high-temperature materials with high spatial resolution and surface quality. As one of the most capable engineering-grade thermoplastics, polyether ketone (PEEK) can be used in additive manufacturing due to its elevated working temperature. This printer will use multiple heat zones, adjustable layer height, and a controlled hopper system to allow the user to fine-tune every print. In this paper, students are required to analyze the technical challenges of SLS based 3D printing technology. Using three separate controlled heat zones, the user will be able to hold the part above its glass transition temperature until the entire part finishes, therefore, annealing it in the process. This will additionally allow for testing and documentation of the effect of heat during preheating, pre-sintering, and post sintering. These features in a small-scale machine will allow thorough documentation of how controlled heated environments can alter the physical properties of a 3D printed part. Using a full steel platform with CNC machined parts and an off the shelf laser, the cost will be reduced to under ten thousand dollars. This undergraduate project to design an SLS based 3D printer provide a unique opportunity for students to fully understand the challenges of SLS manufacturing and gain experience in developing a complex 3D printing system.


Sign in / Sign up

Export Citation Format

Share Document