Numerical Study of Three-Dimensional Oscillatory Natural Convection at Low Prandtl Number in Rectangular Enclosures

2000 ◽  
Vol 123 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Shunichi Wakitani

Numerical investigations are presented for three-dimensional natural convection at low Prandtl numbers (Pr) from 0 to 0.027 in rectangular enclosures with differentially heated vertical walls. Computations are carried out for the enclosures with aspect ratios (length/height) 2 and 4, and width ratios (width/height) ranging from 0.5 to 4.2. Dependence of the onset of oscillation on the Prandtl number, the aspect ratio, and the width ratio is investigated. Furthermore, oscillatory, three-dimensional flow structure is clarified. The structure is characterized by some longitudinal vortices (rolls) as well as cellular pattern.

1981 ◽  
Vol 103 (2) ◽  
pp. 226-231 ◽  
Author(s):  
G. S. Shiralkar ◽  
C. L. Tien

Heat transfer by natural convection in a horizontal cavity with adiabatic horizontal walls and isothermal side walls is investigated numerically for high aspect ratios (width/height). Comparison is made with existing analytical and experimental results. Agreement is generally good at moderate and high Prandtl numbers to which most previous works have been restricted. Improvements of the existing correlation have been proposed in regions of discrepancy. Extension to the low Prandtl number case, including the range of liquid metals, has been made on the basis of an analytical model for high Rayleigh numbers as well as by numerical solution of the full equations. The agreement between the two is found to be very good. A correlation for the heat transfer is proposed for each of the two different cases of high and low Prandtl number.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
Amin Bouraoui ◽  
Rachid Bessaïh

In this paper, a numerical study of three-dimensional (3D) natural convection air-cooling of two identical heat sources, simulating electronic components, mounted in a rectangular enclosure was carried out. The governing equations were solved by using the finite-volume method based on the SIMPLER algorithm. The effects of Rayleigh number Ra, spacing between heat sources d, and aspect ratios Ax in x-direction (horizontal) and Az in z-direction (transversal) of the enclosure on heat transfer were investigated. In steady state, when d is increased, the heat transfer is more important than when the aspect ratios Ax and Az are reduced. In oscillatory state, the critical Rayleigh numbers Racr for different values of spacing between heat sources and their aspect ratios, at which the flow becomes time dependent, were obtained. Results show a strong relation between heat transfers, buoyant flow, and boundary layer. In addition, the heat transfer is more important at the edge of each face of heat sources than at the center region.


2017 ◽  
Vol 10 ◽  
pp. 100-110 ◽  
Author(s):  
Abdullah A.A.A Al-Rashed ◽  
Lioua Kolsi ◽  
Ahmed Kadhim Hussein ◽  
Walid Hassen ◽  
Mohamed Aichouni ◽  
...  

Author(s):  
Patrick H. Oosthuizen

Natural convective heat transfer from isothermal rectangular cylinders which have an exposed upper surface has been numerically studied. The cylinders considered have high aspect ratios, i.e., have high width-to-depth ratios, and are relatively short, i.e., have a “height” that is of the same order of magnitude as their width. The cylinders considered are mounted on a plane adiabatic base, the cylinders being normal to the plane base with the cylinders pointing either vertically upwards or vertically downwards. One of the main aims of the present work was to numerically determine how the depth-to-width ratio of the rectangular cylinder influences the mean heat transfer rate from the cylinder when this depth-to-width ratio is large. The flow has also been assumed to be steady and laminar and it has been assumed that the fluid properties are constant except for the density change with temperature which gives rise to the buoyancy forces, this having been treated by using the Boussinesq approach. The solution has been obtained by numerically solving the governing equations using the commercial CFD solver, ANSYS FLUENT©. The solution is dependent on the Rayleigh number, the ratio of the width to the height of the heated cylinder, the ratio of the width to the depth of the heated cylinder, the Prandtl number, Pr, and on whether the cylinder is pointing vertically upwards or vertically downwards. Because of the applications that motivated this study, results have only been obtained for a Prandtl number of 0.74, i.e., effectively the value for air. A range of the other governing parameters has been considered and the effects of these governing parameters on the Nusselt number variation have been examined.


2004 ◽  
Vol 126 (1) ◽  
pp. 76-83 ◽  
Author(s):  
G. Desrayaud ◽  
G. Lauriat

A numerical study of natural convection generated by a cold vertical wall of an enclosure with two openings on the opposite wall of finite thickness is presented. The enclosure is connected to an infinite reservoir filled with hot air. A two-dimensional laminar flow is assumed both within the enclosure and along the side of the bounding wall immersed into the reservoir. The effects of the size of the openings, spacing between the vertical walls and thermal resistance of the bounding wall are investigated. Numerical results are discussed for aspect ratios of the enclosure and Rayleigh numbers relevant to practical applications.


1977 ◽  
Vol 83 (1) ◽  
pp. 1-31 ◽  
Author(s):  
G. D. Mallinson ◽  
G. De Vahl Davis

The solution of the steady-state Navier–Stokes equations in three dimensions has been obtained by a numerical method for the problem of natural convection in a rectangular cavity as a result of differential side heating. In the past, this problem has generally been treated as though it were two-dimensional. The solutions explore the three-dimensional motion generated by the presence of no-slip adiabatic end walls. For Ra = 104, the three-dimensional motion is shown to be the result of the inertial interaction of the rotating flow with the stationary walls together with a contribution arising from buoyancy forces generated by longitudinal temperature gradients. The inertial effect is inversely dependent on the Prandtl number, whereas the thermal effect is nearly constant. For higher values of Ra, multiple longitudinal flows develop which are a delicate function of Ra, Pr and the cavity aspect ratios.


1974 ◽  
Vol 96 (4) ◽  
pp. 448-454 ◽  
Author(s):  
R. G. Colwell ◽  
J. R. Welty

An experimental program was conducted to study the heat transfer characteristics of mercury in laminar natural convection flow within a vertical open-ended channel over a range of channel widths. Two sets of boundary conditions were investigated separately: (1) uniform heat flux at one wall with the other insulated, and (2) both walls symmetrically and uniformly heated. A decrease in channel width caused a decrease in channel wall temperature in the developing portion of the flow. This unexpected phenomenon persisted until the channel height-to-width ratio, Ar, reached a value greater than 18. Hence, the buoyancy induced flow of a low Prandtl number fluid in a channel is more thermally efficient than a single heated plate. Temperature data have been correlated into local Nusselt versus modified Grashof number plots, based on streamwise position, for several aspect ratios. The effect of aspect ratio on channel temperature is displayed on NuL versus Ar curves for several GrL*. The infinite spacing limit is compared to previous work with temperature profiles and local heat transfer results. Expressions for local and average heat transfer correlations are presented, with suggested limits on their application. The effect of flow in from the sides of the channel was investigated by affixing plastic side plates to the channel.


2020 ◽  
Vol 14 ◽  

—A high-resolution, finite difference numerical studyis reported on three-dimensional steady-state natural convectionof air, for two Rayleigh numbers, in a cubical enclosure, which isheated differentially at one side walls. The temperature of thewall is TC except for the right vertical wall, in which is TH.Thedetails of the three-dimensional flow and thermal characteristicsare described.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012061
Author(s):  
Ganaparthi Chanakya ◽  
Pradeep Kumar

Abstract We present, a three-dimensional numerical simulation of coupled natural convection with diffuse radiation in a cubic cavity whose all four vertical walls are isothermal, the bottom wall is convectively heated and the top wall is insulated. All walls are treated as black, diffuse and opaque for radiation. The simulations are carried out for the fixed Rayleigh (Ra=105) and Prandtl numbers (Pr=0.71) for a transparent and participating medium. The flow visualization technique Q-criteria has been used for analysis of the flow structure. The isothermal surfaces inside the cavity form vertical co-axially convergent-divergent three-dimensional open and closed nozzles, while inside the cavity Q-criteria reveals the formation of Jellyfish like flow structure. The cavity contains four conical vortices whereas each vortex is occupied in tetrahedron space.


Author(s):  
Nuri Alpay Ku¨rekci

Natural convection of air in a cubical volume is investigated experimentally and numerically. A cubical volume of 20×20×20 cm dimensions was built for the experimental study. One of the vertical walls covering the volume is hot, the other one is cold and the rest are adiabatic. Three walls are made of aluminum and the others are made of heat-resistant glass. The hot wall temperature is kept constant during the experiments by means of an electrical heater. The cold wall is at the ambient temperature. Other adiabatic surfaces are insulated with polyurethane foam. Experiments are performed in an air-conditioned room at 21°C. PIV (Particle Image Velocimetry) is used for velocity measurements. The FLUENT CFD software package is used for the numerical study. A three-dimensional solution is obtained for the laminar flow case for a 61×61×61 grid. The numerical and experimental results are compared with each other for the validation of the numerical solution under the testing conditions of TH = 69°C, TC = 41°C and Ra = 1.3×107. Results obtained from the numerical and experimental studies are in a reasonably good agreement with each other.


Sign in / Sign up

Export Citation Format

Share Document