An Experimental Investigation of Natural Convection With a Low Prandtl Number Fluid in a Vertical Channel With Uniform Wall Heat Flux

1974 ◽  
Vol 96 (4) ◽  
pp. 448-454 ◽  
Author(s):  
R. G. Colwell ◽  
J. R. Welty

An experimental program was conducted to study the heat transfer characteristics of mercury in laminar natural convection flow within a vertical open-ended channel over a range of channel widths. Two sets of boundary conditions were investigated separately: (1) uniform heat flux at one wall with the other insulated, and (2) both walls symmetrically and uniformly heated. A decrease in channel width caused a decrease in channel wall temperature in the developing portion of the flow. This unexpected phenomenon persisted until the channel height-to-width ratio, Ar, reached a value greater than 18. Hence, the buoyancy induced flow of a low Prandtl number fluid in a channel is more thermally efficient than a single heated plate. Temperature data have been correlated into local Nusselt versus modified Grashof number plots, based on streamwise position, for several aspect ratios. The effect of aspect ratio on channel temperature is displayed on NuL versus Ar curves for several GrL*. The infinite spacing limit is compared to previous work with temperature profiles and local heat transfer results. Expressions for local and average heat transfer correlations are presented, with suggested limits on their application. The effect of flow in from the sides of the channel was investigated by affixing plastic side plates to the channel.

2000 ◽  
Vol 123 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Shunichi Wakitani

Numerical investigations are presented for three-dimensional natural convection at low Prandtl numbers (Pr) from 0 to 0.027 in rectangular enclosures with differentially heated vertical walls. Computations are carried out for the enclosures with aspect ratios (length/height) 2 and 4, and width ratios (width/height) ranging from 0.5 to 4.2. Dependence of the onset of oscillation on the Prandtl number, the aspect ratio, and the width ratio is investigated. Furthermore, oscillatory, three-dimensional flow structure is clarified. The structure is characterized by some longitudinal vortices (rolls) as well as cellular pattern.


1981 ◽  
Vol 103 (2) ◽  
pp. 226-231 ◽  
Author(s):  
G. S. Shiralkar ◽  
C. L. Tien

Heat transfer by natural convection in a horizontal cavity with adiabatic horizontal walls and isothermal side walls is investigated numerically for high aspect ratios (width/height). Comparison is made with existing analytical and experimental results. Agreement is generally good at moderate and high Prandtl numbers to which most previous works have been restricted. Improvements of the existing correlation have been proposed in regions of discrepancy. Extension to the low Prandtl number case, including the range of liquid metals, has been made on the basis of an analytical model for high Rayleigh numbers as well as by numerical solution of the full equations. The agreement between the two is found to be very good. A correlation for the heat transfer is proposed for each of the two different cases of high and low Prandtl number.


Author(s):  
Patrick H. Oosthuizen

Natural convective heat transfer from isothermal rectangular cylinders which have an exposed upper surface has been numerically studied. The cylinders considered have high aspect ratios, i.e., have high width-to-depth ratios, and are relatively short, i.e., have a “height” that is of the same order of magnitude as their width. The cylinders considered are mounted on a plane adiabatic base, the cylinders being normal to the plane base with the cylinders pointing either vertically upwards or vertically downwards. One of the main aims of the present work was to numerically determine how the depth-to-width ratio of the rectangular cylinder influences the mean heat transfer rate from the cylinder when this depth-to-width ratio is large. The flow has also been assumed to be steady and laminar and it has been assumed that the fluid properties are constant except for the density change with temperature which gives rise to the buoyancy forces, this having been treated by using the Boussinesq approach. The solution has been obtained by numerically solving the governing equations using the commercial CFD solver, ANSYS FLUENT©. The solution is dependent on the Rayleigh number, the ratio of the width to the height of the heated cylinder, the ratio of the width to the depth of the heated cylinder, the Prandtl number, Pr, and on whether the cylinder is pointing vertically upwards or vertically downwards. Because of the applications that motivated this study, results have only been obtained for a Prandtl number of 0.74, i.e., effectively the value for air. A range of the other governing parameters has been considered and the effects of these governing parameters on the Nusselt number variation have been examined.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Abhijit Guha ◽  
Subho Samanta

A boundary layer based integral analysis has been performed to investigate laminar natural convection heat transfer characteristics for fluids with arbitrary Prandtl number over a semi-infinite horizontal plate subjected either to a variable wall temperature or variable heat flux. The wall temperature is assumed to vary in the form T¯w(x¯)-T¯∞=ax¯n whereas the heat flux is assumed to vary according to qw(x¯)=bx¯m. Analytical closed-form solutions for local and average Nusselt number valid for arbitrary values of Prandtl number and nonuniform heating conditions are mathematically derived here. The effects of various values of Prandtl number and the index n or m on the heat transfer coefficients are presented. The results of the integral analysis compare well with that of previously published similarity theory, numerical computations and experiments. A study is presented on how the choice for velocity and temperature profiles affects the results of the integral theory. The theory has been generalized for arbitrary orders of the polynomials representing the velocity and temperature profiles. The subtle role of Prandtl number in determining the relative thicknesses of the velocity and temperature boundary layers for natural convection is elucidated and contrasted with that in forced convection. It is found that, in natural convection, the two boundary layers are of comparable thickness if Pr ≤ 1 or Pr ≈ 1. It is only when the Prandtl number is large (Pr > 1) that the velocity boundary layer is thicker than the thermal boundary layer.


2019 ◽  
Vol 23 (1) ◽  
pp. 179-190 ◽  
Author(s):  
Irfan Mustafa ◽  
Tariq Javed

The present analysis is concerned to examine the enhancement of heat transfer in natural convection flow of nanofluid through a vertical wavy plate assumed at variable heat flux. The rate of heat transfer in nanofluid flow as compared to pure water can be increased due to increase the density of nanofluid which depends on the density and concentration of nanoparticles. For this analysis, Tiwari and Das model is used by considering two nanoparticles i. e. Al2O3 and Cu are suspended in a base fluid (water). A very efficient implicit finite difference technique converges quadratically is applied on the concerning PDE for numerical solution. The effects of pertinent parameters namely, volume fraction parameter of nanoparticle, wavy surface amplitude, Prandtl number and exponent of variable heat flux on streamlines, isothermal lines, local skin friction coefficient and local Nusselt number are shown through graphs. In this analysis, a maximum heat transfer rate is noted in Cu-water nanofluid through a vertical wavy surface as compared to Al2O3-water and pure water.


1970 ◽  
Vol 39 (1) ◽  
pp. 50-56
Author(s):  
Tahmina Akhter ◽  
MA Alim

The effects of radiation on natural convection flow around a sphere with uniform surface heat flux have been investigated in this paper. We have considered here a sphere with uniform surface heat flux immersed in a viscous incompressible optically thick fluid. The governing equations are first transformed into non-dimensional form and the resulting nonlinear systems of partial differential equations are then solved numerically using Finite-difference method with Keller-box scheme. We have focused our attention on the evolution of the shear stress in terms of local skin friction coefficient and the rate of heat transfer in terms of local Nusselt number. Also, velocity as well as temperature profiles are shown graphically for some selected values of radiation parameter (Rd), surface temperature parameter (D) and Prandtl number (Pr). Keywords: Thermal radiation, Prandtl number, natural convection, uniform surface heat flux. doi:10.3329/jme.v39i1.1834 Journal of Mechanical Engineering, vol. ME39, No. 1, June 2008 50-56


2007 ◽  
Vol 12 (2) ◽  
pp. 203-212 ◽  
Author(s):  
P. Kandaswamy ◽  
J. Lee ◽  
A. K. Abdul Hakeem

Natural convection heat transfer in a square cavity induced by heated plate is studied numerically. Top and bottom of the cavity are adiabatic, the two vertical walls of the cavity have constant temperature lower than the plate’s temperature. The flow is assumed to be two-dimensional. The discretized equations were solved by finite difference method using Alternating Direction Implicit technique and Successive OverRelaxation method. The study was performed for different values of Grashof number ranging from 103 to 105 for different aspect ratios and position of heated plate. Air was chosen as a working fluid (Pr = 0.71). The effect of the position and aspect ratio of heated plate on heat transfer and flow were addressed. With increase of Gr heat transfer rate increased in both vertical and horizontal position of the plate. When aspect ratio of heated thin plate is decreased the heat transfer also decreases. For the vertical situation of thin plate heat transfer becomes more enhanced than for horizontal situation.


2013 ◽  
Author(s):  
Reza Baghaei Lakeh ◽  
H. Pirouz Kavehpour ◽  
Adrienne S. Lavine ◽  
Gani B. Ganapathi ◽  
Richard E. Wirz

The effect of turbulent natural convection in vertical storage tubes containing a supercritical fluid is investigated computationally. In a supercritical thermal storage system, thermal energy is transferred to the storage fluid and is stored as the internal energy of the fluid in supercritical state. The heat is conducted from the heat transfer fluid to the storage fluid through the storage tube wall. Unlike phase-change systems, the heat transfer mechanism within the storage tubes of supercritical thermal storage system is dominantly affected by rigorous turbulent natural convection. The natural convection enhances the heat transfer and compensates for the low thermal conductivity of the storage fluid. The turbulent buoyancy-driven flow field in vertical storage tubes with different aspect ratios is investigated in this paper and the effect of vertical orientation of storage tubes on the characteristics of the flow field is explored. A standard k-epsilon method is utilized to model the Reynolds stresses in turbulent natural convection flow. The results of this study show that the turbulent buoyancy-driven flow and natural convection play an important role in charge and discharge of the supercritical thermal storage system. The charge time of the system is a function of Rayleigh number and aspect ratio of the storage tube.


Sign in / Sign up

Export Citation Format

Share Document