Characterization of the Effect of Corrugation Angles on Hydrodynamic and Heat Transfer Performance of Four-Start Spiral Tubes

2001 ◽  
Vol 123 (6) ◽  
pp. 1149-1158 ◽  
Author(s):  
X. D. Chen ◽  
X. Y. Xu ◽  
S. K. Nguang ◽  
Arthur E. Bergles

A series of four-start spirally corrugated tubes has been subjected to heat transfer and hydrodynamic testing in a double-pipe heat exchanger. The study has been focused on the non-symmetric nature of the corrugation angles along the longitudinal direction. Both friction factors and heat transfer coefficients inside the tubes have been correlated against various process parameters. It can be shown that by altering the internal non-symmetric wavy shapes of the tubes, one is able to manipulate heat transfer and friction characteristics. The experimental results have been compared with some popular correlation models developed previously for both friction and heat transfer for corrugated tubes. Considerable differences between the experimental results and the predictions made using the existing correlations have been found and the probable causes have been discussed. Performance evaluation criteria are presented using the standard constant power criterion. A neural network modeling approach has been taken so that, based on the limited data, one can generate the contour showing the effect of corrugation angle on heat transfer coefficient for geometry optimization purposes.

1986 ◽  
Vol 108 (1) ◽  
pp. 55-61 ◽  
Author(s):  
R. Sethumadhavan ◽  
M. Raja Rao

Investigations have been carried out on heat transfer and frictional characteristics of five spirally corrugated tubes of one to four corrugation starts, having the same helix angle, but of varying geometrical aspect ratios, for the turbulent flow of water and 50 percent glycerol. The thermal performance of these tubes was found to be superior compared to a smooth tube. Friction factors and heat transfer coefficients in these rough tubes were analysed on the basis of momentum and heat transfer analogy, and the correlation obtained was tested with the present data and also the published results of previous investigators. Performance evaluation criteria were used for the quantitative demonstration of the benefits offered by these spirally corrugated tubes for heat exchanger applications.


Author(s):  
L. X. Du ◽  
P. Q. Yu ◽  
M. Zeng ◽  
Q. W. Wang

In order to improve the thermal efficiency of the microturbines, the compact and high efficient primary surface heat exchangers are mandatory. Recently, the thermal and hydrodynamic performances of a cross-wavy (CW) primary surface recuperator are experimentally investigated. The recuperator tested in the experiment is only 1/3 part of the whole recuperator which is designed for a 100kW microturbine. The experimental results have shown that the comprehensive thermal and hydrodynamic performances of the CW primary surface recuperator are competitive. The overall heat transfer coefficients and the pressure drops of the recuperator are tested in the experiments. And the range of the Reynolds number is from 150 to 400. The corresponding correlations between heat transfer coefficients and Reynolds numbers and the correlations between friction factors and Reynolds numbers are obtained. The Genetic Algorithm (GA) has been used to separate the coefficients of heat transfer correlations in the hot and cold sides of the partial recuperator by separating the overall heat transfer coefficient without experimentally knowing wall temperatures. In order to improve the hydrodynamic performance, the flow arrangement is also carefully designed. Furthermore, the experimental results have also confirmed that the flow distribution in the recuperator is quite uniform.


Lubricants ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 26
Author(s):  
Nico Buchhorn ◽  
Michael Stottrop ◽  
Beate Bender

In tilting-pad journal bearings (TPJB) with a non-flooded lubrication concept, higher maximum pad temperatures occur than with a flooded bearing design due to the lower convective heat transfer at the pad edges. In this paper, we present an approach to influence the thermal behavior of a five-pad TPJB by active cooling. The aim of this research is to investigate the influence of additional oil supply grooves at the trailing edge of the two loaded pads on the maximum pad temperature of a large TPJB in non-flooded design. We carry out experimental and numerical investigations for a redesigned test bearing. Within the experimental analysis, the reduction in pad temperature is quantified. A simulation model of the bearing is synthesized with respect to the additional oil supply grooves. The simulation results are compared with the experimental data to derive heat transfer coefficients for the pad surfaces. The experimental results indicate a considerable reduction of the maximum pad temperatures. An overall lower temperature level is observed for the rear pad in circumferential direction (pad 4). The authors attribute this effect by a cooling oil carry-over from the previous pad (3). Within the model limits, a good agreement of the simulation and experimental results can be found.


1984 ◽  
Vol 106 (1) ◽  
pp. 55-63 ◽  
Author(s):  
P. Souza Mendes ◽  
E. M. Sparrow

A comprehensive experimental study was performed to determine entrance region and fully developed heat transfer coefficients, pressure distributions and friction factors, and patterns of fluid flow in periodically converging and diverging tubes. The investigated tubes consisted of a succession of alternately converging and diverging conical sections (i.e., modules) placed end to end. Systematic variations were made in the Reynolds number, the taper angle of the converging and diverging modules, and the module aspect ratio. Flow visualizations were performed using the oil-lampblack technique. A performance analysis comparing periodic tubes and conventional straight tubes was made using the experimentally determined heat transfer coefficients and friction factors as input. For equal mass flow rate and equal transfer surface area, there are large enhancements of the heat transfer coefficient for periodic tubes, with accompanying large pressure drops. For equal pumping power and equal transfer surface area, enhancements in the 30–60 percent range were encountered. These findings indicate that periodic converging-diverging tubes possess favorable enhancement characteristics.


1983 ◽  
Vol 105 (4) ◽  
pp. 851-861 ◽  
Author(s):  
E. M. Sparrow ◽  
W. Q. Tao

Experiments were performed in a flat rectangular duct to determine the heat transfer and pressure drop response to periodic, rod-type disturbance elements situated adjacent to one principal wall and oriented transverse to the flow direction. In a portion of the experiments, heat transfer occurred only at the rodded wall, while in the remainder, heat was transferred at both principal walls of the duct. Highly detailed axial distributions of the local heat transfer coefficient were obtained. These distributions revealed the rapid establishment of a periodic (i.e., cyclic) fully developed regime as well as recurring local maxima and minima. Cycle-average, fully developed heat transfer coefficients were evaluated and were found to be much larger than those for a smooth-walled duct. Linear pressure distributions were measured between periodically positioned stations in the fully developed region, and the corresponding friction factors were several times greater than the smooth-duct values. The heat transfer and friction data were very well correlated using parameters that take account of the effective surface roughness associated with the disturbance rods.


2003 ◽  
Vol 125 (2) ◽  
pp. 274-280 ◽  
Author(s):  
H. K. Moon ◽  
T. O’Connell ◽  
R. Sharma

The heat transfer rate from a smooth wall in an internal cooling passage can be significantly enhanced by using a convex patterned surface on the opposite wall of the passage. This design is particularly effective for a design that requires the heat transfer surface to be free of any augmenting features (smooth). Heat transfer coefficients on the smooth wall in a rectangular channel, which had convexities on the opposite wall were experimentally investigated. Friction factors were also measured to assess the thermal performance. Relative clearances δ/d between the convexities and the smooth wall of 0, 0.024, and 0.055 were investigated in a Reynolds number ReHD range from 15,000 to 35,000. The heat transfer coefficients were measured in the thermally developed region using a transient thermochromic liquid crystal technique. The clearance gap between the convexities and the smooth wall adversely affected the heat transfer enhancement NuHD. The friction factors (f ), measured in the aerodynamically developed region, were largest for the cases of no clearance δ/d=0). The average heat transfer enhancement Nu¯HD was also largest for the cases of no clearance δ/d=0, as high as 3.08 times at a Reynolds number of 11,456 in relative to that Nuo of an entirely smooth channel. The normalized Nusselt numbers Nu¯HD/Nuo, as well as the normalized friction factors f/fo, for all three cases, decreased with Reynolds numbers. However, the decay rate of the friction factor ratios f/fo with Reynolds numbers was lower than that of the normalized Nusselt numbers. For all three cases investigated, the thermal performance Nu¯HD/Nuo/f/fo1/3 values were within 5% to each other. The heat transfer enhancement using a convex patterned surface was thermally more effective at a relative low Reynolds numbers (less than 20,000 for δ/d=0) than that of a smooth channel.


Sign in / Sign up

Export Citation Format

Share Document