Friction factors and heat transfer coefficients in turbulated cooling passages of different aspect ratios. I - Experimental results

Author(s):  
M. TASLIM ◽  
S. SPRING
1986 ◽  
Vol 108 (1) ◽  
pp. 55-61 ◽  
Author(s):  
R. Sethumadhavan ◽  
M. Raja Rao

Investigations have been carried out on heat transfer and frictional characteristics of five spirally corrugated tubes of one to four corrugation starts, having the same helix angle, but of varying geometrical aspect ratios, for the turbulent flow of water and 50 percent glycerol. The thermal performance of these tubes was found to be superior compared to a smooth tube. Friction factors and heat transfer coefficients in these rough tubes were analysed on the basis of momentum and heat transfer analogy, and the correlation obtained was tested with the present data and also the published results of previous investigators. Performance evaluation criteria were used for the quantitative demonstration of the benefits offered by these spirally corrugated tubes for heat exchanger applications.


Author(s):  
L. X. Du ◽  
P. Q. Yu ◽  
M. Zeng ◽  
Q. W. Wang

In order to improve the thermal efficiency of the microturbines, the compact and high efficient primary surface heat exchangers are mandatory. Recently, the thermal and hydrodynamic performances of a cross-wavy (CW) primary surface recuperator are experimentally investigated. The recuperator tested in the experiment is only 1/3 part of the whole recuperator which is designed for a 100kW microturbine. The experimental results have shown that the comprehensive thermal and hydrodynamic performances of the CW primary surface recuperator are competitive. The overall heat transfer coefficients and the pressure drops of the recuperator are tested in the experiments. And the range of the Reynolds number is from 150 to 400. The corresponding correlations between heat transfer coefficients and Reynolds numbers and the correlations between friction factors and Reynolds numbers are obtained. The Genetic Algorithm (GA) has been used to separate the coefficients of heat transfer correlations in the hot and cold sides of the partial recuperator by separating the overall heat transfer coefficient without experimentally knowing wall temperatures. In order to improve the hydrodynamic performance, the flow arrangement is also carefully designed. Furthermore, the experimental results have also confirmed that the flow distribution in the recuperator is quite uniform.


1984 ◽  
Vol 106 (1) ◽  
pp. 55-63 ◽  
Author(s):  
P. Souza Mendes ◽  
E. M. Sparrow

A comprehensive experimental study was performed to determine entrance region and fully developed heat transfer coefficients, pressure distributions and friction factors, and patterns of fluid flow in periodically converging and diverging tubes. The investigated tubes consisted of a succession of alternately converging and diverging conical sections (i.e., modules) placed end to end. Systematic variations were made in the Reynolds number, the taper angle of the converging and diverging modules, and the module aspect ratio. Flow visualizations were performed using the oil-lampblack technique. A performance analysis comparing periodic tubes and conventional straight tubes was made using the experimentally determined heat transfer coefficients and friction factors as input. For equal mass flow rate and equal transfer surface area, there are large enhancements of the heat transfer coefficient for periodic tubes, with accompanying large pressure drops. For equal pumping power and equal transfer surface area, enhancements in the 30–60 percent range were encountered. These findings indicate that periodic converging-diverging tubes possess favorable enhancement characteristics.


2001 ◽  
Vol 123 (6) ◽  
pp. 1149-1158 ◽  
Author(s):  
X. D. Chen ◽  
X. Y. Xu ◽  
S. K. Nguang ◽  
Arthur E. Bergles

A series of four-start spirally corrugated tubes has been subjected to heat transfer and hydrodynamic testing in a double-pipe heat exchanger. The study has been focused on the non-symmetric nature of the corrugation angles along the longitudinal direction. Both friction factors and heat transfer coefficients inside the tubes have been correlated against various process parameters. It can be shown that by altering the internal non-symmetric wavy shapes of the tubes, one is able to manipulate heat transfer and friction characteristics. The experimental results have been compared with some popular correlation models developed previously for both friction and heat transfer for corrugated tubes. Considerable differences between the experimental results and the predictions made using the existing correlations have been found and the probable causes have been discussed. Performance evaluation criteria are presented using the standard constant power criterion. A neural network modeling approach has been taken so that, based on the limited data, one can generate the contour showing the effect of corrugation angle on heat transfer coefficient for geometry optimization purposes.


1996 ◽  
Vol 118 (1) ◽  
pp. 21-26 ◽  
Author(s):  
David Copeland

Experimental measurements of multiple nozzle submerged jet array impingement single-phase and boiling heat transfer were made using FC-72 and 1 cm square copper pin fin arrays, having equal width and spacing of 0.1 and 0.2 mm, with aspect ratios from 1 to 5. Arrays of 25 and 100 nozzles were used, with diameters of 0.25 to 1.0 mm providing nozzle area from 5 to 20 mm2 (5 to 20% of the heat source base area). Flow rates of 2.5 to 10 cm3/s (0.15 to 0.6 l/min) were studied, with nozzle velocities from 0.125 to 2 m/s. Single nozzles and smooth surfaces were also evaluated for comparison. Single-phase heat transfer coefficients (based on planform area) from 2.4 to 49.3 kW/m2 K were measured, while critical heat flux varied from 45 to 395 W/cm2. Correlations of the single-phase heat transfer coefficient and critical heat flux as functions of pin fin dimensions, number of nozzles, nozzle area and liquid flow rate are provided.


2002 ◽  
Vol 124 (5) ◽  
pp. 975-978 ◽  
Author(s):  
Li Yong and ◽  
K. Sumathy

Quasi-local absorption heat transfer coefficients and pressure drop inside a horizontal tube absorber have been investigated experimentally, with R-22/DMA as the working pair. The absorber is a counterflow coaxial tube-in-tube heat-exchanger with the working fluid flowing in the inner tube while the water moves through the annulus. A large temperature gliding has been experienced during the absorption process. Experimental results show that the heat transfer coefficient of the forced convective vapor absorption process is higher compared to the vertical falling film absorption. A qualitative study is made to analyze the effect of mass flux, vapor quality and solution concentration on pressure drop and heat transfer coefficients. On the basis of the experimental results, a new correlation is proposed whereby the two-phase heat transfer is taken as a product of the forced convection of the absorption and the combined effect of heat and mass transfer at the interface. The correlation is found to predict the experimental data almost within 30 percent.


1985 ◽  
Vol 107 (2) ◽  
pp. 307-312 ◽  
Author(s):  
D. G. Motwani ◽  
U. N. Gaitonde ◽  
S. P. Sukhatme

Average heat transfer coefficients during forced convection air flow over inclined and yawed rectangular plates have been experimentally determined. Tripping wires at the edges ensured that a turbulent boundary layer prevailed over the plates. The experiments were carried out for a constant surface temperature and covered two plates of different aspect ratios, angles of attack from 0 to 45 deg, angles of yaw from 0 to 30 deg, and Reynolds numbers from 2 times; 104 to 3.5 times; 105. The results show that the average heat transfer coefficient is essentially insensitive to the aspect ratio and angle of yaw. However, it is a function of Reynolds number and the angle of attack. Correlation equations for various angles of attack are suggested.


Sign in / Sign up

Export Citation Format

Share Document