Constructive Filtering Algorithms for Delayed Systems With Uncertain Statistics

2003 ◽  
Vol 125 (2) ◽  
pp. 229-235 ◽  
Author(s):  
N. K. Ahmedova ◽  
V. B. Kolmanovskii ◽  
A. I. Matasov

A stochastic optimal guaranteed estimation problem for dynamic delayed systems with uncertain statistics is considered. The solution of this problem reduces to a complex nonsmooth extremal problem. To obtain an approximate solution, the nonsmooth problem is replaced by a smooth one. Constructive filtering algorithms are obtained from an approximate solution of the smooth problem under the assumption that the delay is small in comparison with the observation time. Estimates for the nonoptimality levels of the proposed filtering algorithms are derived.

1994 ◽  
Vol 39 (6) ◽  
pp. 1282-1286 ◽  
Author(s):  
A. Golovan ◽  
A. Matasov

Author(s):  
A Stotsky

A new computationally efficient filtering algorithm for the reconstruction of the first harmonic of a periodic signal is presented. The algorithm allows the recovery of the combustion quality information from the engine speed measurements that are noise contaminated. The algorithm is verified by using a spark ignition V8 engine in the torque estimation problem.


Author(s):  
Alain R. Trudel ◽  
M. Trudel

AirfugeR (Beckman) direct ultracentrifugation of viral samples on electron microscopy grids offers a rapid way to concentrate viral particles or subunits and facilitate their detection and study. Using the A-100 fixed angle rotor (30°) with a K factor of 19 at maximum speed (95 000 rpm), samples up to 240 μl can be prepared for electron microscopy observation in a few minutes: observation time is decreased and structural details are highlighted. Using latex spheres to calculate the increase in sensitivity compared to the inverted drop procedure, we obtained a 10 to 40 fold increase in sensitivity depending on the size of particles. This technique also permits quantification of viral particles in samples if an aliquot is mixed with latex spheres of known concentration.Direct ultracentrifugation for electron microscopy can be performed on laboratory samples such as gradient or column fractions, infected cell supernatant, or on clinical samples such as urine, tears, cephalo-rachidian liquid, etc..


Author(s):  
Longxiang Su ◽  
Yinghua Guo ◽  
Yajuan Wang ◽  
Delong Wang ◽  
Changting Liu

AbstractTo explore the effectiveness of microgravity simulated by head-down bed rest (HDBR) and artificial gravity (AG) with exercise on lung function. Twenty-four volunteers were randomly divided into control and exercise countermeasure (CM) groups for 96 h of 6° HDBR. Comparisons of pulse rate, pulse oxygen saturation (SpO2) and lung function were made between these two groups at 0, 24, 48, 72, 96 h. Compared with the sitting position, inspiratory capacity and respiratory reserve volume were significantly higher than before HDBR (0° position) (P< 0.05). Vital capacity, expiratory reserve volume, forced vital capacity, forced expiratory volume in 1 s, forced inspiratory vital capacity, forced inspiratory volume in 1 s, forced expiratory flow at 25, 50 and 75%, maximal mid-expiratory flow and peak expiratory flow were all significantly lower than those before HDBR (P< 0.05). Neither control nor CM groups showed significant differences in the pulse rate, SpO2, pulmonary volume and pulmonary ventilation function over the HDBR observation time. Postural changes can lead to variation in lung volume and ventilation function, but a HDBR model induced no changes in pulmonary function and therefore should not be used to study AG CMs.


Sign in / Sign up

Export Citation Format

Share Document