Kalman Filter in Guaranteed Estimation Problem

Author(s):  
A. I. Matasov
2013 ◽  
Vol 13 (23) ◽  
pp. 11643-11660 ◽  
Author(s):  
A. Chatterjee ◽  
A. M. Michalak

Abstract. Data assimilation (DA) approaches, including variational and the ensemble Kalman filter methods, provide a computationally efficient framework for solving the CO2 source–sink estimation problem. Unlike DA applications for weather prediction and constituent assimilation, however, the advantages and disadvantages of DA approaches for CO2 flux estimation have not been extensively explored. In this study, we compare and assess estimates from two advanced DA approaches (an ensemble square root filter and a variational technique) using a batch inverse modeling setup as a benchmark, within the context of a simple one-dimensional advection–diffusion prototypical inverse problem that has been designed to capture the nuances of a real CO2 flux estimation problem. Experiments are designed to identify the impact of the observational density, heterogeneity, and uncertainty, as well as operational constraints (i.e., ensemble size, number of descent iterations) on the DA estimates relative to the estimates from a batch inverse modeling scheme. No dynamical model is explicitly specified for the DA approaches to keep the problem setup analogous to a typical real CO2 flux estimation problem. Results demonstrate that the performance of the DA approaches depends on a complex interplay between the measurement network and the operational constraints. Overall, the variational approach (contingent on the availability of an adjoint transport model) more reliably captures the large-scale source–sink patterns. Conversely, the ensemble square root filter provides more realistic uncertainty estimates. Selection of one approach over the other must therefore be guided by the carbon science questions being asked and the operational constraints under which the approaches are being applied.


1994 ◽  
Vol 39 (6) ◽  
pp. 1282-1286 ◽  
Author(s):  
A. Golovan ◽  
A. Matasov

2015 ◽  
Vol 22 (4) ◽  
pp. 577-590 ◽  
Author(s):  
Mohamad Fakhari Mehrjardi ◽  
Hilmi Sanusi ◽  
Mohd. Alauddin Mohd. Ali

Abstract Estimation of satellite three-axis attitude using only one sensor data presents an interesting estimation problem. A flexible and mathematically effective filter for solving the satellite three-axis attitude estimation problem using two-axis magnetometer would be a challenging option for space missions which are suffering from other attitude sensors failure. Mostly, magnetometers are employed with other attitude sensors to resolve attitude estimation. However, by designing a computationally efficient discrete Kalman filter, full attitude estimation can profit by only two-axis magnetometer observations. The method suggested solves the problem of satellite attitude estimation using linear Kalman filter (LKF). Firstly, all models are generated and then the designed scenario is developed and evaluated with simulation results. The filter can achieve 10e-3 degree attitude accuracy or better on all three axes.


Aerospace ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 246
Author(s):  
Jiaolong Wang ◽  
Zeyang Chen

Motivated by the rapid progress of aerospace and robotics engineering, the navigation and control systems on matrix Lie groups have been actively studied in recent years. For rigid targets, the attitude estimation problem is a benchmark one with its states defined as rotation matrices on Lie groups. Based on the invariance properties of symmetry groups, the invariant Kalman filter (IKF) has been developed by researchers for matrix Lie group systems; however, the limitation of the IKF is that its estimation performance is prone to be degraded if the given knowledge of the noise statistics is not accurate. For the symmetry Lie group attitude estimation problem, this paper proposes a new variational Bayesian iteration-based adaptive invariant Kalman filter (VBIKF). In the proposed VBIKF, the a priori error covariance is not propagated by the conventional steps but directly calibrated in an iterative manner based on the posterior sequences. The main advantage of the VBIKF is that the statistics parameter of the system process noise is no longer required and so the IKF’s hard dependency on accurate process noise statistics can be reduced significantly. The mathematical foundation for the new VBIKF is presented and its superior performance in adaptability and simplicity is further demonstrated by numerical simulations.


SPE Journal ◽  
2007 ◽  
Vol 12 (03) ◽  
pp. 282-292 ◽  
Author(s):  
Jan-Arild Skjervheim ◽  
Geir Evensen ◽  
Sigurd Ivar Aanonsen ◽  
Bent Ole Ruud ◽  
Tor-Arne Johansen

Summary A method based on the ensemble Kalman filter (EnKF) for continuous model updating with respect to the combination of production data and 4D seismic data is presented. When the seismic data are given as a difference between two surveys, a combination of the ensemble Kalman filter and the ensemble Kalman smoother has to be applied. Also, special care has to be taken because of the large amount of data assimilated. Still, the method is completely recursive, with little additional cost compared to the traditional EnKF. The model system consists of a commercial reservoir simulator coupled with a rock physics and seismic modeling software. Both static variables (porosity, permeability, and rock physic parameters) and dynamic variables (saturations and pressures) may be updated continuously with time based on the information contained in the assimilated measurements. The method is applied to a synthetic model and a real field case from the North Sea. In both cases, the 4D seismic data are different variations of inverted seismic. For the synthetic case, it is shown that the introduction of seismic data gives a much better estimate of reservoir permeability. For the field case, the introduction of seismic data gives a very different permeability field than using only production data, while retaining the production match. Introduction The Kalman filter was originally developed to update the states of linear systems (Kalman 1960). For a presentation of this method in a probabilistic, linear least-squares setting, see Tarantola (2005). However, this method is not suitable for nonlinear models, and the ensemble Kalman filter (EnKF) method was introduced in 1994 by Geir Evensen for updating nonlinear ocean models (Evensen 1994). The method may also be applied to a combined state and parameter estimation problem (Evensen 2006; Lorentzen 2001; Anderson 1998). Several recent investigations have shown the potential of the EnKF for continuous updating of reservoir simulation models, as an alternative to traditional history matching (Nævdal et al. 2002a, b; Nævdal et al. 2005; Gu and Oliver 2004; Gao and Reynolds 2005; Wen and Chen 2005). The EnKF method is a Monte Carlo type sequential Bayesian inversion, and provides an approximate solution to the combined parameter and state-estimation problem. The result is an ensemble of solutions approximating the posterior probability density function for the model input parameters (e.g., permeability and porosity), state variables (pressures and saturations), and other output data (e.g., well production history) conditioned to measured, dynamic data. Conditioning reservoir simulation models to seismic data is a difficult task (Gosselin et al. 2003). In this paper, we show how the ensemble Kalman filter method can be used to update a combined reservoir simulation/seismic model using the combination of production data and inverted 4D seismic data. There are special challenges involved in the assimilation of the large amount of data available with 4D seismic, and the present work is based on the work presented by Evensen (2006, 2004) and Evensen and van Leeuwen (2000). In the following, the combined state and parameter estimation problem is described in a Bayesian framework, and it is shown how this problem is solved using the EnKF method, with emphasis on the application to 4D seismic data. When the seismic data are given as a difference between two surveys, a combination of the ensemble Kalman filter and the ensemble Kalman smoother has to be applied. Special challenges involved when the amount of data is very large are discussed. The validity of the method is examined using a synthetic model, and finally, a real case from the North Sea is presented.


Sign in / Sign up

Export Citation Format

Share Document