Measurement of Void Fraction and Pressure Drop of Air-Oil Two-Phase Flow in Horizontal Pipes

2004 ◽  
Vol 126 (1) ◽  
pp. 107-118 ◽  
Author(s):  
J. L. Pawloski ◽  
C. Y. Ching ◽  
M. Shoukri

The void fractions, flow regimes, and pressure drop of air-oil two-phase flow in a half-inch diameter pipe over a wide range of test conditions have been investigated. The flow regimes were identified with the aid of a 1000 frames per second high-speed camera. A capacitance sensor for instantaneous void fraction measurements was developed. The mean and probability density function of the instantaneous void fraction signal can be used to effectively identify the different flow regimes. The current flow regime data show significant differences in the transitional boundaries of the existing flow regime maps. Property correction factors for the flow regime maps are recommended. The pressure drop measurements were compared to the predictions from four existing two-phase flow pressure drop models. Though some of the models performed better for certain flow regimes, none of the models were found to give accurate results over the entire range of flow regimes.

Author(s):  
J. Pawloski ◽  
C. Ching ◽  
M. Shoukri

The flow regimes and pressure drop of air-oil two-phase flow in a half-inch diameter pipe over a wide range of test conditions have been investigated. The flow regimes were identified with the aid of a 1000 frames per second high-speed camera. The current flow regime data show significant differences in the transitional boundaries from the flow regime maps of Mandhane et al. (1974), Taitel and Dukler (1974) and Spedding and Nguyen (1980). The pressure drop measurements were compared to the predictions from four existing pressure drop models: Homogeneous, Martinelli (1948), Chisolm (1973) and Olujic (1985). The Chisolm and Martinelli models were found to be the most accurate, with an average error of about 35 percent. A capacitance sensor for instantaneous void fraction measurement was developed. Results indicate the data from the sensor could be used to identify the different flow regimes.


Author(s):  
Christian Weinmu¨ller ◽  
Dimos Poulikakos

Microfluidics has experienced a significant increase in research activities in recent years with a wide range of applications emerging, such as micro heat exchangers, energy conversion devices, microreactors, lab-on-chip devices and micro total chemical analysis systems (μTAS). Efforts to enhance or extend the performance of single phase microfluidic devices are met by two-phase flow systems [1, 2]. Essential for the design and control of microfluidic systems is the understanding of the fluid/hydrodynamic behavior, especially pressure drop correlations. These are well established for single phase flow, however, analytical correlations for two-phase flow only reflect experimentally obtained values within an accuracy of ± 50% [3, 4]. The present study illustrates the effect of two-phase flow regimes on the pressure drop. Experimental measurement data is put into relation of calculated values based on established correlations of Lockhart-Martinelli with Chisholm modifications for macroscopic flows [5, 6] and Mishima-Hibiki modifications for microscale flows [7]. Further, the experimental pressure drop data is superimposed onto two-phase flow maps to identify apparent correlations of pressure drop abnormalities and flow regimes. The experiments were conducted in a square microchannel with a width of 200 μm. Optical access is guaranteed by an anodically bonded glass plate on a MEMS fabricated silicon chip. Superficial velocities range from 0.01 m/s to 1 m/s for the gas flow and from 0.0001 m/s to 1 m/s for the liquid flow with water as liquid feed and CO2 as gas. The analysis of the flow regimes was performed by imaging the distinct flow regimes by laser induced fluorescence microscopy, employing Rhodamine B as the photosensitive dye. The pressure drop was synchronically recorded with a 200 mbar, 2.5 bar and 25 bar differential pressure transmitter and the data was exported via a LabView based software environment, see Figure 1. Figure 2 illustrates the experimentally obtained pressure drop in comparison to the calculated values based on the Lockhard-Martinelli correlation with the Chisholm modification and the Mishima-Hibiki modification. For both cases the predications underestimate the two-phase pressure drop by more than 50%. Nevertheless, the regression of the experimental data has an offset of linear nature. Two-phase flow is assigned to flow regime maps of bubbly, wedging, slug or annular flow defined by superficial gas and liquid velocities. In Figure 3 the pressure drop is plotted as a surface over the corresponding flow regime map. Transition lines indicate a change of flow regimes enclosing an area of an anticline in the pressure data. In the direct comparison between the calculated and the measured values, the two surfaces show a distinct deviation. Especially, the anticline of the experimental data is not explained by the analytical correlations. Figure 4 depicts the findings of Figure 3 at a constant superficial velocity of 0.0232 m/s. The dominant influence of the flow regimes on the pressure drop becomes apparent, especially in the wedging flow regime. The evident deviation of two-phase flow correlations for the pressure drop is based on omitting the influence of the flow regimes. In conclusion, the study reveals a strong divergence of pressure drop measurements in microscale two-phase flow from established correlations of Lockhart-Martinelli and recognized modifications. In reference to [8, 9], an analytical model incorporating the flow regimes and, hence, predicting the precise pressure drop would be of great benefit for hydrodynamic considerations in microfluidics.


Author(s):  
Sidharth Paranjape ◽  
Susan N. Ritchey ◽  
Suresh V. Garimella

Electrical impedance of a two-phase mixture is a function of void fraction and phase distribution. The difference in the electrical conductance and permittivity of the two phases can be exploited to measure electrical impedance for obtaining void fraction and flow regime characteristics. An electrical impedance meter is constructed for the measurement of void fraction in microchannel two-phase flow. The experiments are conducted in air-water two-phase flow under adiabatic conditions. A transparent acrylic test section of hydraulic diameter 780 micrometer is used in the experimental investigation. The impedance void meter is calibrated against the void fraction measured using analysis of images obtained with a high-speed camera. Based on these measurements, a methodology utilizing the statistical characteristics of the void fraction signals is employed for identification of microchannel flow regimes.


2012 ◽  
Vol 33 (2) ◽  
pp. 47-65
Author(s):  
Amr Mohamed Elazhary ◽  
Hassan M. Soliman

Abstract An experimental study was conducted in order to investigate two-phase flow regimes and fully developed pressure drop in a mini-size, horizontal rectangular channel. The test section was machined in the form of an impacting tee junction in an acrylic block (in order to facilitate visualization) with a rectangular cross-section of 1.87-mm height on 20-mm width on the inlet and outlet sides. Pressure drop measurement and flow regime identification were performed on all three sides of the junction. Air-water mixtures at 200 kPa (abs) and room temperature were used as the test fluids. Four flow regimes were identified visually: bubbly, plug, churn, and annular over the ranges of gas and liquid superficial velocities of 0.04 ≤ JG ≤ 10 m/s and 0.02 ≤ JL ≤ 0.7 m/s, respectively, and a flow regime map was developed. Accuracy of the pressure-measurement technique was validated with single-phase, laminar and turbulent, fully developed data. Two-phase experiments were conducted for eight different inlet conditions and various mass splits at the junction. Comparisons were conducted between the present data and former correlations for the fully developed two-phase pressure drop in rectangular channels with similar sizes. Wide deviations were found among these correlations, and the correlations that agreed best with the present data were identified.


2021 ◽  
Author(s):  
Faraj Ben Rajeb ◽  
Syed Imtiaz ◽  
Yan Zhang ◽  
Amer Aborig ◽  
Mohamed M. Awad ◽  
...  

Abstract Slug flow is one of the most common flow patterns in non-Newtonian two-phase flow in pipes. It is a very common occurrence in gas-liquid two-phase flow in the pipe. Usually, it is an unfavorable flow pattern due to its unsteady nature, intermittency as well as high pressure drop. The differences between slug flow and elongated bubble flow are not clear because usually these two types of flow combined under one flow category. In general, these two-phase flow regimes are commonly defined as intermittent flow. In the present study, pressure gradient, and wave behavior in slug flow have been investigated depending on experimental work. In addition, void fraction has been estimated regarding available superficial liquid and gas velocities. The experimental records of superficial velocities of gas and liquid for slug flow and other flow patterns is used to create flow regime map for the gas non-Newtonian flow system. The effect of investigated flow regime velocities for non-Newtonian/gas flow on pressure drop and void fraction is reported. Pressure drop has been discovered to be reduced in slug flow more than other flow patterns due to high shear thinning behavior.


Author(s):  
Paul J. Kreitzer ◽  
Michael Hanchak ◽  
Larry Byrd

Understanding the behavior of transient two phase refrigerant flow is an important aspect of implementing vapor compression systems in future aerospace applications. Pressure drop and heat transfer coefficient are important parameters that guide the design process, and are influenced by flow regime. Published two phase flow models rely heavily on a priori knowledge of the current two phase flow conditions including flow regime. Additional complications arise when applying published correlations to a range of systems because each correlation is based on a specific set of experimental conditions, including working fluid, flow orientation, channel size, and channel shape. Non-intrusive measurement techniques provide important advantages while measuring the behavior of two phase flow systems. A two phase flow experimental test rig has been developed at the Air Force Research Laboratory, providing a closed loop refrigeration system capable of producing flow regimes from bubbly through annular flow. Two phase flow is produced by pumping subcooled R134a through a heat exchanger with 40 minichannels into an adiabatic transparent fused quartz observation channel with a hydraulic diameter of 7 mm. Refrigerant mass flux is varied from 100–400 kg/m2s with a heat flux from 0–15.5 W/cm2. Temperatures ranged from 18–25 °C and pressures between 550–750 kPa. The data from high speed pressure transducers were analyzed using standard signal processing techniques to identify the different flow regimes. Initial results indicate that different flow regimes can be identified from their pressure signature. In addition, real-time void fraction measurements were taken using Electrical Capacitance Tomography (ECT). This paper describes the process behind ECT systems used to measure two phase flow conditions. Comparisons with high speed video assess the accuracy of ECT measurements in identifying various two phase flow conditions. Results indicate variations between ECT and high speed images, however, enough information is provided to create flow pattern maps and regime identification for different superficial vapor and liquid velocities.


Author(s):  
Braden A. McDermott ◽  
Timothy A. Shedd

A unique horizontal two-phase flow facility has been fabricated in an effort to understand the dynamics of two-phase flow in small pipes. The fluid chosen for study is the low pressure refrigerant R-123. In this work, two-phase pressure drop data were obtained for two-phase flow of refrigerant R-123 in a 17.0 mm inner diameter tube over a wide range of quality, from .015–1, and mass fluxes that were varied from 50 kg m−2 s−1 to 550 kg m−2 s−1. These data have been compared, as a whole and by regime, against four frequently-used two-phase frictional pressure drop prediction correlations. Flow regimes were visualized using a quartz tube at the end of the test section over this wide range of conditions, which ranged from stratified to annular flow. Each condition was mapped on the Mandhane, Taitel-Dukler, and Kattan-Favrat-Thome flow regime maps in an attempt to understand the applicability of each. Some discrepancies exist between the current data and the published flow maps, and recommendations are made based on these observations. The pressure drop data appear to be dependent upon the flow regime, suggesting that an entire set of correlations is necessary based upon flow regime for accurate prediction of pressure drop.


1994 ◽  
Vol 59 (12) ◽  
pp. 2595-2603
Author(s):  
Lothar Ebner ◽  
Marie Fialová

Two regions of instabilities in horizontal two-phase flow were detected. The first was found in the transition from slug to annular flow, the second between stratified and slug flow. The existence of oscillations between the slug and annular flows can explain the differences in the limitation of the slug flow in flow regime maps proposed by different authors. Coexistence of these two regimes is similar to bistable behaviour of some differential equation solutions.


Sign in / Sign up

Export Citation Format

Share Document