Correlations Between Pressure Drop and Two-Phase Flow Regimes in Microchannel Networks

Author(s):  
Christian Weinmu¨ller ◽  
Dimos Poulikakos

Microfluidics has experienced a significant increase in research activities in recent years with a wide range of applications emerging, such as micro heat exchangers, energy conversion devices, microreactors, lab-on-chip devices and micro total chemical analysis systems (μTAS). Efforts to enhance or extend the performance of single phase microfluidic devices are met by two-phase flow systems [1, 2]. Essential for the design and control of microfluidic systems is the understanding of the fluid/hydrodynamic behavior, especially pressure drop correlations. These are well established for single phase flow, however, analytical correlations for two-phase flow only reflect experimentally obtained values within an accuracy of ± 50% [3, 4]. The present study illustrates the effect of two-phase flow regimes on the pressure drop. Experimental measurement data is put into relation of calculated values based on established correlations of Lockhart-Martinelli with Chisholm modifications for macroscopic flows [5, 6] and Mishima-Hibiki modifications for microscale flows [7]. Further, the experimental pressure drop data is superimposed onto two-phase flow maps to identify apparent correlations of pressure drop abnormalities and flow regimes. The experiments were conducted in a square microchannel with a width of 200 μm. Optical access is guaranteed by an anodically bonded glass plate on a MEMS fabricated silicon chip. Superficial velocities range from 0.01 m/s to 1 m/s for the gas flow and from 0.0001 m/s to 1 m/s for the liquid flow with water as liquid feed and CO2 as gas. The analysis of the flow regimes was performed by imaging the distinct flow regimes by laser induced fluorescence microscopy, employing Rhodamine B as the photosensitive dye. The pressure drop was synchronically recorded with a 200 mbar, 2.5 bar and 25 bar differential pressure transmitter and the data was exported via a LabView based software environment, see Figure 1. Figure 2 illustrates the experimentally obtained pressure drop in comparison to the calculated values based on the Lockhard-Martinelli correlation with the Chisholm modification and the Mishima-Hibiki modification. For both cases the predications underestimate the two-phase pressure drop by more than 50%. Nevertheless, the regression of the experimental data has an offset of linear nature. Two-phase flow is assigned to flow regime maps of bubbly, wedging, slug or annular flow defined by superficial gas and liquid velocities. In Figure 3 the pressure drop is plotted as a surface over the corresponding flow regime map. Transition lines indicate a change of flow regimes enclosing an area of an anticline in the pressure data. In the direct comparison between the calculated and the measured values, the two surfaces show a distinct deviation. Especially, the anticline of the experimental data is not explained by the analytical correlations. Figure 4 depicts the findings of Figure 3 at a constant superficial velocity of 0.0232 m/s. The dominant influence of the flow regimes on the pressure drop becomes apparent, especially in the wedging flow regime. The evident deviation of two-phase flow correlations for the pressure drop is based on omitting the influence of the flow regimes. In conclusion, the study reveals a strong divergence of pressure drop measurements in microscale two-phase flow from established correlations of Lockhart-Martinelli and recognized modifications. In reference to [8, 9], an analytical model incorporating the flow regimes and, hence, predicting the precise pressure drop would be of great benefit for hydrodynamic considerations in microfluidics.

2004 ◽  
Vol 126 (1) ◽  
pp. 107-118 ◽  
Author(s):  
J. L. Pawloski ◽  
C. Y. Ching ◽  
M. Shoukri

The void fractions, flow regimes, and pressure drop of air-oil two-phase flow in a half-inch diameter pipe over a wide range of test conditions have been investigated. The flow regimes were identified with the aid of a 1000 frames per second high-speed camera. A capacitance sensor for instantaneous void fraction measurements was developed. The mean and probability density function of the instantaneous void fraction signal can be used to effectively identify the different flow regimes. The current flow regime data show significant differences in the transitional boundaries of the existing flow regime maps. Property correction factors for the flow regime maps are recommended. The pressure drop measurements were compared to the predictions from four existing two-phase flow pressure drop models. Though some of the models performed better for certain flow regimes, none of the models were found to give accurate results over the entire range of flow regimes.


Author(s):  
J. Pawloski ◽  
C. Ching ◽  
M. Shoukri

The flow regimes and pressure drop of air-oil two-phase flow in a half-inch diameter pipe over a wide range of test conditions have been investigated. The flow regimes were identified with the aid of a 1000 frames per second high-speed camera. The current flow regime data show significant differences in the transitional boundaries from the flow regime maps of Mandhane et al. (1974), Taitel and Dukler (1974) and Spedding and Nguyen (1980). The pressure drop measurements were compared to the predictions from four existing pressure drop models: Homogeneous, Martinelli (1948), Chisolm (1973) and Olujic (1985). The Chisolm and Martinelli models were found to be the most accurate, with an average error of about 35 percent. A capacitance sensor for instantaneous void fraction measurement was developed. Results indicate the data from the sensor could be used to identify the different flow regimes.


2005 ◽  
Vol 127 (4) ◽  
pp. 479-486
Author(s):  
Bin Liu ◽  
Mauricio Prado

For any pumping artificial lift system in the petroleum industry, the free gas significantly affects the performance of the pump and the system above the pump. A model, though not a complete two-phase flow model, has been developed for the effective prediction of separation efficiency across a wide range of production conditions. The model presented is divided into two main parts, the single-phase flow-field solution and the bubble-tracking method. The first part of the model solves the single-phase liquid flow field using the computational fluid dynamics approach. Then, a simple bubble-tracking method was applied to estimate the down-hole natural separation efficiency for two-phase flow. A comparison between the results of the model and the experimental data was conducted. It shows a very good agreement with the experimental data for lower gas void fractions (bubble flow regime).


2012 ◽  
Vol 33 (2) ◽  
pp. 47-65
Author(s):  
Amr Mohamed Elazhary ◽  
Hassan M. Soliman

Abstract An experimental study was conducted in order to investigate two-phase flow regimes and fully developed pressure drop in a mini-size, horizontal rectangular channel. The test section was machined in the form of an impacting tee junction in an acrylic block (in order to facilitate visualization) with a rectangular cross-section of 1.87-mm height on 20-mm width on the inlet and outlet sides. Pressure drop measurement and flow regime identification were performed on all three sides of the junction. Air-water mixtures at 200 kPa (abs) and room temperature were used as the test fluids. Four flow regimes were identified visually: bubbly, plug, churn, and annular over the ranges of gas and liquid superficial velocities of 0.04 ≤ JG ≤ 10 m/s and 0.02 ≤ JL ≤ 0.7 m/s, respectively, and a flow regime map was developed. Accuracy of the pressure-measurement technique was validated with single-phase, laminar and turbulent, fully developed data. Two-phase experiments were conducted for eight different inlet conditions and various mass splits at the junction. Comparisons were conducted between the present data and former correlations for the fully developed two-phase pressure drop in rectangular channels with similar sizes. Wide deviations were found among these correlations, and the correlations that agreed best with the present data were identified.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Renato P. Coutinho ◽  
Ligia Tornisiello ◽  
Paulo J. Waltrich

Abstract A limited amount of work exists on gas–liquid flow in vertical pipe annulus, and, to the knowledge of the authors, there is no work on the literature to characterize vertical downward two-phase flow in pipe annulus. In the petroleum industry, downward two-phase in annulus is encountered on liquid-assisted gas-lift (LAGL) unloading and production operations. This study presents experimental data for pressure gradient, liquid holdup, and flow regimes for vertical downward two-phase (air and water) flow in pipe annulus. Also, the applicability of two-phase flow models are evaluated. The experimental results show that the liquid holdup is consistently higher for downward flow in annulus than in pipes for the annular flow regime, and these differences are as high as 45%. When the flow regime map for downward flow in annulus is compared with the ones in the literature for flow in pipes, it is observed that the intermittent flow in pipes occurs at lower liquid velocities than flow in annulus. The comparison between experimental data and model results also shows some discrepancy for liquid holdup and pressure gradient. These differences are high for annular and intermittent flow regimes, with errors of 100% for the liquid holdup and 200% for pressure gradient. However, the errors for bubble flow regime are much smaller, generally lower than 20%.


Author(s):  
Bin Liu ◽  
Mauricio Prado

For any pumping artificial lift system in petroleum industry, the free gas significantly affects the performance of the pump and the system above the pump. A model, though not a complete two-phase flow model, has been developed for the effective prediction of separation efficiency across a wide range of production conditions. The model presented is divided into two main parts, the single-phase flow field solution and the bubble tracking method. The first part of the model solves the single-phase liquid flow field using the CFD approach. Then, a simple bubble-tracking method was applied to estimate the down-hole natural separation efficiency for two-phase flow. A comparison between the results of the model and the experimental data was conducted. It shows a very good agreement with the experimental data for lower gas void fractions (bubble flow regime).


2021 ◽  
Author(s):  
Baihui Jiang ◽  
Zhiwei Zhou ◽  
Yu Ji

Abstract With compact structure and enhanced heat transfer capacity, helical-coiled once through steam generators (HTSGs) are widely used in the small modular reactors (SMRs). Nevertheless, the inside centrifugal forces make the flow more complicated, and increase the frictional pressure drop, which is closely related to the dual test of alternating thermal stress and flow instability. Therefore, the analysis of the friction factor in helically coiled tubes is significant to the efficient and safe operation of HTSGs. While the friction factor of single-phase flow in helically coiled tubes was fully studied and extensive correlations have been validated by a large amount of experimental data, the friction factor of two-phase flow still lacks feasible prediction due to its much more complexity. The existed correlations of two-phase flow in helically coiled tubes are mostly based on specified experimental parameters, so the applicable range is limited. Few scholars have tried to extend these correlations to broader applicability, but the trivial applicable range is unsuitable for program development or engineering design, which needs an accurate prediction of friction factor in a wider range. In this paper, existing frictional pressure drop correlations are investigated. The accuracy of single-phase frictional pressure drop correlations is verified through the comparison of calculation results. Since the known experimental data cannot cover a wide range of parameters, two assumptions are proposed, and the rationality is verified through the existing experimental data and calculation analysis. Based on the two assumptions and calculation, a set of calculation correlations for frictional pressure drop of two-phase flow in helically coiled tubes are proposed. The accuracy of this calculation model is validated by experimental data. The scope of application of this model is: D / d = 15–100, P = 0.12–6.3MPa, G = 200–1500kg / m2s, which is sufficient to support the design and operation of steam generators and the development of the simulation programs.


Author(s):  
Braden A. McDermott ◽  
Timothy A. Shedd

A unique horizontal two-phase flow facility has been fabricated in an effort to understand the dynamics of two-phase flow in small pipes. The fluid chosen for study is the low pressure refrigerant R-123. In this work, two-phase pressure drop data were obtained for two-phase flow of refrigerant R-123 in a 17.0 mm inner diameter tube over a wide range of quality, from .015–1, and mass fluxes that were varied from 50 kg m−2 s−1 to 550 kg m−2 s−1. These data have been compared, as a whole and by regime, against four frequently-used two-phase frictional pressure drop prediction correlations. Flow regimes were visualized using a quartz tube at the end of the test section over this wide range of conditions, which ranged from stratified to annular flow. Each condition was mapped on the Mandhane, Taitel-Dukler, and Kattan-Favrat-Thome flow regime maps in an attempt to understand the applicability of each. Some discrepancies exist between the current data and the published flow maps, and recommendations are made based on these observations. The pressure drop data appear to be dependent upon the flow regime, suggesting that an entire set of correlations is necessary based upon flow regime for accurate prediction of pressure drop.


Author(s):  
Veera Manek ◽  
Tao Fang ◽  
S. Mostafa Ghiaasiaan ◽  
Jeff Patelczyk

Abstract Single-phase and two-phase frictional pressure drop in horizontally-oriented double helically coiled tubes confined in a cylindrical shell is experimentally studied using an instrumented test loop that represents a prototypical liquified natural gas (LNG) fuel delivery system for internal combustion (IC) engines. Adiabatic experimental data addressing liquid (water) and gas (nitrogen) single-phase flows, as well as two-phase flows (air-water) in the helicoidally coiled tubes are presented. The range of Reynolds numbers for single-phase flow experiments is 2600 to 4800. In two-phase flow experiments the liquid-only and gas-only Reynolds numbers varied in 1030 to 6600 and 1700 to 17700 ranges, respectively. In laminar single-phase flow regime the measured friction factors are in relatively good agreement with well-established correlations. In the turbulent flow regime the measured friction factors are moderately higher than the prediction of well-established published correlations. Two-phase flow frictional pressure drops are compared with some relevant correlations, with poor agreement. The generated experimental data are empirically correlated based on the two-phase flow multiplier concept.


Sign in / Sign up

Export Citation Format

Share Document