The Qualitative Synthesis of Parallel Manipulators

2004 ◽  
Vol 126 (4) ◽  
pp. 617-624 ◽  
Author(s):  
Jorge Angeles

As shown in this paper, when designing parallel manipulators for tasks involving less than six degrees of freedom, the topology can be laid out by resorting to qualitative reasoning. More specifically, the paper focuses on cases whereby the manipulation tasks pertain to displacements with the algebraic structure of a group. Besides the well-known planar and spherical displacements, this is the case of displacements involving: rotation about a given axis and translation in the direction of the same axis (cylindrical subgroup); translation in two and three dimensions (two- and three-dimensional translation subgroups); three independent translations and rotation about an axis of fixed direction, what is known as the Scho¨nflies subgroup; and similar to the Scho¨nflies subgroup, but with the rotation and the translation in the direction of the axis of rotation replaced by a screw displacement. For completeness, the fundamental concepts of motion representation and groups of displacements, as pertaining to rigid bodies, are first recalled. Finally, the concept of Π-joint, introduced elsewhere, is generalized to two and three degrees of freedom, thereby ending up with the Π2-and the Π3-joints, respectively.

2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Andrew Johnson ◽  
Xianwen Kong ◽  
James Ritchie

The determination of workspace is an essential step in the development of parallel manipulators. By extending the virtual-chain (VC) approach to the type synthesis of parallel manipulators, this technical brief proposes a VC approach to the workspace analysis of parallel manipulators. This method is first outlined before being illustrated by the production of a three-dimensional (3D) computer-aided-design (CAD) model of a 3-RPS parallel manipulator and evaluating it for the workspace of the manipulator. Here, R, P and S denote revolute, prismatic and spherical joints respectively. The VC represents the motion capability of moving platform of a manipulator and is shown to be very useful in the production of a graphical representation of the workspace. Using this approach, the link interferences and certain transmission indices can be easily taken into consideration in determining the workspace of a parallel manipulator.


1993 ◽  
Vol 69 (3) ◽  
pp. 965-979 ◽  
Author(s):  
K. Hepp ◽  
A. J. Van Opstal ◽  
D. Straumann ◽  
B. J. Hess ◽  
V. Henn

1. Although the eye has three rotational degrees of freedom, eye positions, during fixations, saccades, and smooth pursuit, with the head stationary and upright, are constrained to a plane by ListingR's law. We investigated whether Listing's law for rapid eye movements is implemented at the level of the deeper layers of the superior colliculus (SC). 2. In three alert rhesus monkeys we tested whether the saccadic motor map of the SC is two dimensional, representing oculocentric target vectors (the vector or V-model), or three dimensional, representing the coordinates of the rotation of the eye from initial to final position (the quaternion or Q-model). 3. Monkeys made spontaneous saccadic eye movements both in the light and in the dark. They were also rotated about various axes to evoke quick phases of vestibular nystagmus, which have three degrees of freedom. Eye positions were measured in three dimensions with the magnetic search coil technique. 4. While the monkey made spontaneous eye movements, we electrically stimulated the deeper layers of the SC and elicited saccades from a wide range of initial positions. According to the Q-model, the torsional component of eye position after stimulation should be uniquely related to saccade onset position. However, stimulation at 110 sites induced no eye torsion, in line with the prediction of the V-model. 5. Activity of saccade-related burst neurons in the deeper layers of the SC was analyzed during rapid eye movements in three dimensions. No systematic eye-position dependence of the movement fields, as predicted by the Q-model, could be detected for these cells. Instead, the data fitted closely the predictions made by the V-model. 6. In two monkeys, both SC were reversibly inactivated by symmetrical bilateral injections of muscimol. The frequency of spontaneous saccades in the light decreased dramatically. Although the remaining spontaneous saccades were slow, Listing's law was still obeyed, both during fixations and saccadic gaze shifts. In the dark, vestibularly elicited fast phases of nystagmus could still be generated in three dimensions. Although the fastest quick phases of horizontal and vertical nystagmus were slower by about a factor of 1.5, those of torsional quick phases were unaffected. 7. On the basis of the electrical stimulation data and the properties revealed by the movement field analysis, we conclude that the collicular motor map is two dimensional. The reversible inactivation results suggest that the SC is not the site where three-dimensional fast phases of vestibular nystagmus are generated.(ABSTRACT TRUNCATED AT 400 WORDS)


1995 ◽  
Vol 117 (4) ◽  
pp. 658-661 ◽  
Author(s):  
H. R. Mohammadi Daniali ◽  
P. J. Zsombor-Murray ◽  
J. Angeles

Two versions of spatial double-triangular mechanisms are introduced, one with three and one with six degrees of freedom. Using dual-number quaternion algebra, a formula for the direct kinematics of these manipulators is derived. Numerical examples are included.


1989 ◽  
Vol 33 (02) ◽  
pp. 84-92
Author(s):  
G. X. Wu ◽  
R. Eatock Taylor

The problem of wave radiation and diffraction by submerged spheroids is analyzed using linearized three-dimensional potential-flow theory. The solution is obtained by expanding the velocity potential into a series of Legendre functions in a spheroidal coordinate system. Tabulated and graphical results are provided for added mass and damping coefficients of various spheroids undergoing motions in six degrees of freedom. Graphs are also provided for exciting forces and moments corresponding to a range of incoming wave angles.


1991 ◽  
Vol 35 (01) ◽  
pp. 40-57
Author(s):  
Nickolas Vlahopoulos ◽  
Michael M. Bernitsas

The dynamic behavior of a nonintegral riser bundle is studied parametrically. The dynamics of each component-riser is analyzed by a three-dimensional, nonlinear, large deflection, small strain model with coupled bending and torsion. Component-risers are slender, thin-walled, extensible or inextensible tubular beam-columns, subject to response and deformation dependent hydrodynamic loads. The con-nector equations of equilibrium are used to derive the connector forces and moments. Substructuring can thus be achieved even though in three dimensions connectors do not impose linearly dependent deflections at substructure interfaces. The developed time incremental and iterative finite-element computer code is used to analyze the effects of water depth, distribution of connectors, distance between component risers and number of finite elements in the numerical model. The problem of total CPU (central processor unit) time and the advantages of substructuring are discussed by running cases of up to 1094 degrees of freedom.


1982 ◽  
Vol 26 (01) ◽  
pp. 38-44
Author(s):  
James H. Duncan ◽  
Clinton E. Brown

A computational procedure is developed using first-order hydrodynamic theory to predict the motions and power absorption from arrays of similar three-dimensional buoys. The buoy shape and the number and placement of the buoys may be arbitrarily selected. The program provides for waves of selected frequency and direction or combinations thereof by simple superposition; thus, the effects on energy absorption of wave energy spectral distributions or short-crestedness can be analyzed. The computer model has been validated by comparison of its results with published analytically derived power optimal solutions for five buoys in a linear array. The program provides the power output of each buoy in the array with the associated motions in six degrees of freedom. The limited number of cases studied has provided the interesting result that identical buoys in an array tend to absorb wave energy at rates close to those of optimized systems for which buoy amplitude and phasing would have to be controlled.


2003 ◽  
Vol 125 (2) ◽  
pp. 302-307 ◽  
Author(s):  
Marco Carricato ◽  
Vincenzo Parenti-Castelli

This article addresses parallel manipulators with fewer than six degrees of freedom, whose use may prove valuable in those applications in which a higher mobility is uncalled for. In particular, a family of 3-dof manipulators containing only revolute joints or at the most revolute and prismatic ones is studied. Design and assembly conditions sufficient to provide the travelling platform with a pure translational motion are determined and two sub-families that fulfill the imposed constraint are found: one is already known in the literature, while the other is original. The new architecture does not exhibit rotation singularities, i.e., configurations in which the platform gains rotational degrees of freedom. A geometric interpretation of the translation singularities is provided.


1948 ◽  
Vol 44 (3) ◽  
pp. 342-344 ◽  
Author(s):  
P. A. P. Moran

A rubber molecule containing n + 1 carbon atoms may be represented by a chain of n links of equal length such that successive links are at a fixed angle to each other but are otherwise at random. The statistical distribution of the length of the molecule, that is, the distance between the first and last carbon atoms, has been considered by various authors (Treloar (1) gives references). In particular, if the first atom is kept fixed at the origin of a system of coordinates and the chain is otherwise at random, it has been conjectured that the distribution of the (n + 1)th atom will tend, as n increases, towards a three-dimensional normal distribution of the formwhere σ depends on n. Thus r2 (= x2 + y2 + z2) will be approximately distributed as σ2χ2 with three degrees of freedom.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850066
Author(s):  
Payel Mukhopadhyay ◽  
K. Rajesh Nayak

Carter's constant is a nontrivial conserved quantity of motion of a particle moving in stationary axisymmetric spacetime. In the version of the theorem originally given by Carter, due to the presence of two Killing vectors, the system effectively has two degrees of freedom. We propose an extension to the first version of Carter's theorem to a system having three degrees of freedom to find two functionally independent Carter-like integrals of motion. We further generalize the theorem to a dynamical system with [Formula: see text] degrees of freedom. We further study the implications of Carter's constant to superintegrability and present a different approach to probe a superintegrable system. Our formalism gives another viewpoint to a superintegrable system using the simple observation of separable Hamiltonian according to Carter's criteria. We then give some examples by constructing some two-dimensional superintegrable systems based on this idea and also show that all three-dimensional simple classical superintegrable potentials are also Carter separable.


2020 ◽  
Vol 143 (7) ◽  
Author(s):  
Samia Dahite ◽  
Mihai Arghir

Abstract The present work deals with the thermogasodynamic analysis of the segmented annular seal provided with Rayleigh pockets. The paper is a continuation of the work presented Arghir, M., and Mariot, A. (2017, “Theoretical Analysis of the Static Characteristics of the Carbon Segmented Seal,” ASME J. Tribol., 139(6), p. 062202.) where an isothermal model of the segmented annular seal was first presented. Each segment had three degrees-of-freedom, and its static position was obtained by solving the nonlinear equations of equilibrium. Thermal effects are now introduced by considering a simplified form of the energy equation in the thin gas film coupled with the three dimensional heat transfer in a segment of the seal and in the rotor. An efficient numerical algorithm is developed. A parametric study was performed for a segmented annular seal with pockets taken from the literature and operating with air. First, a test case proved the necessity of considering three degrees-of-freedom for the segment and not only its radial displacement. The parametric study was then performed for two different pocket depths, two pressure differences, and different rotation speeds. The results showed a non-uniform heating with larger temperatures at the leading edge of the segment where the minimal film thickness occurs. Heating is proportional to the pocket depth that lowers the lift force of the segment and to the pressure difference that closes the seal.


Sign in / Sign up

Export Citation Format

Share Document