Static Friction Model for Rough Surfaces With Asymmetric Distribution of Asperity Heights

2004 ◽  
Vol 126 (3) ◽  
pp. 626-629 ◽  
Author(s):  
Ning Yu, ◽  
Shaun R. Pergande, and ◽  
Andreas A. Polycarpou

The CEB static friction model is extended to include asymmetric distributions of asperity heights, using the normalized one-parameter Weibull distribution. The normal contact, tangential (friction), and adhesion forces are calculated for different skewness values, and are used to obtain the static friction coefficient. It is predicted that surfaces with negative skewness experience higher static friction coefficient compared to the Gaussian case, under the same external normal load, which agrees with published data. This effect is magnified for lower external loads, as is commonly encountered in microtribological applications.

Author(s):  
Renzhen Chen ◽  
Xiaopeng Li ◽  
Jinchi Xu ◽  
Zemin Yang ◽  
Hexu Yang

The primary objective of this fundamental research is to investigate the mechanical properties of the disk spring when the friction at the contact edges is asymmetric and varies with the load. The contact mechanics study shows that the static friction and static friction coefficient on fractal surfaces change depending on the normal load. In this paper, a fractal contact model based on the W-M function is used to explore the connection between the static friction and the normal load. Subsequently, taking into account the asymmetry of the contact surface at the edge, the variable static friction coefficient is brought into the existing model to obtain an improved static model of the disk spring. Different fractal dimensions, frictional states and free heights are considered under quasi-static loading condition, the relative errors between this paper and the method using Coulomb friction are also calculated, and experimental validation was performed. The static stiffness and force hysteresis of the disk spring for different forms of asymmetric variable friction are discussed. It is shown that using the variable friction model can improve the computational accuracy of the disk spring model under small loads and help to improve the design and control accuracy of preload and vibration isolation equipment using the disk spring as a component.


1998 ◽  
Vol 120 (2) ◽  
pp. 296-303 ◽  
Author(s):  
A. A. Polycarpou ◽  
Izhak Etsion

A model for calculating the static friction coefficient of contacting real (rough) surfaces in the presence of very thin liquid films (sub-boundary lubrication) is developed. The liquid has a very high affinity for the surfaces and its thickness is of the order of the surface roughness average. An extension of the Greenwood and Williamson (GW) asperity model and an improved Derjaguin, Muller and Toporov (DMT) adhesion model are utilized for calculating the contact and adhesion forces, respectively. The effects of the liquid film thickness and the surface topography on the static friction coefficient are investigated. A critical film thickness is found above which the friction coefficient increases sharply. The critical thickness depends on the surface roughness and the external normal load. This phenomenon is more profound for very smooth surfaces and small normal loads, in agreement with published experimental work on magnetic hard disk interfaces.


1993 ◽  
Vol 115 (3) ◽  
pp. 406-410 ◽  
Author(s):  
I. Etsion ◽  
M. Amit

The effect of normal loading on the static friction coefficient between smooth metallic surfaces is experimentally investigated. Normal loads in the range of 10−3N to 0.3N were applied to small diameter samples made of three different aluminum alloys and contacting a nickel coated surface. The tests were done under controlled humidity and clean air conditions. A dramatic increase in the static friction coefficient was observed as the normal load was reduced to its lower level. This behavior is attributed to the role played by adhesion forces which are more pronounced at small normal loads and smooth surfaces and is in agreement with recent theoretical analyses.


2003 ◽  
Author(s):  
George G. Adams ◽  
Sinan Mu¨ftu¨

The effect of an asymmetric distribution of asperity heights is accounted for in a recently developed scale-dependent multi-asperity model of contact and friction. A Weibull distribution of asperity heights is used which allows the skew and kurtosis to be varied, but not independently of each other. The contact and friction model used includes the effects of adhesion and of scale-dependent friction. The results obtained demonstrate that positive/negative skew decreases/increases both the friction coefficient and its dependence on the magnitude of the normal load.


2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Zhou Chen

Finite element analysis is conducted on an elastic-plastic full stick contact between a rigid flat and a deformable coated sphere with a soft coating. A combined normal and tangential load is applied to the rigid flat, and the sliding inception is assumed as a result of the decreasing tangential stiffness of the contact junction. As the coating becomes thicker, the static friction coefficient first decreases reaching a minimum and then increases. This demonstrates a friction reduction effect of soft coatings that is opposite to hard coatings. The static friction coefficient decreases with increasing normal load as the contact junction contains more plasticity and becomes more compliant.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wujiu Pan ◽  
Xiaopeng Li ◽  
Xue Wang

Purpose The purpose of this paper is to provide a static friction coefficient prediction model of rough contact surfaces based on the contact mechanics analysis of elastic-plastic fractal surfaces. Design/methodology/approach In this paper, the continuous deformation stage of the multi-scale asperity is considered, i.e. asperities on joint surfaces go through three deformation stages in succession, the elastic deformation, the elastic-plastic deformation (the first elastic-plastic region and the second elastic-plastic region) and the plastic deformation, rather than the direct transition from the elastic deformation to the plastic deformation. In addition, the contact between rough metal surfaces should be the contact of three-dimensional topography, which corresponds to the fractal dimension D (2 < D < 3), not two-dimensional curves. So, in consideration of the elastic-plastic deformation mechanism of asperities and the three-dimensional topography, the contact mechanics of the elastic-plastic fractal surface is analyzed, and the static friction coefficient nonlinear prediction model of the surface is further established. Findings There is a boundary value between the normal load and the fractal dimension. In the range smaller than the boundary value, the normal load decreases with fractal dimension; in the range larger than the boundary value, the normal load increases with fractal dimension. Considering the elastic-plastic deformation of the asperity on the contact surface, the total normal contact load is larger than that of ignoring the elastic-plastic deformation of the asperity. There is a proper fractal dimension, which can make the static friction of the contact surface maximum; there is a negative correlation between the static friction coefficient and the fractal scale coefficient. Originality/value In the mechanical structure, the research and prediction of the static friction coefficient characteristics of the interface will lay a foundation for the understanding of the mechanism of friction and wear and the interaction relationship between contact surfaces from the micro asperity-scale level, which has an important engineering application value.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
D. Cohen ◽  
Y. Kligerman ◽  
I. Etsion

A model for elastic-plastic nominally flat contacting rough surfaces under combined normal and tangential loading with full stick contact condition is presented. The model incorporates an accurate finite element analysis for contact and sliding inception of a single elastic-plastic asperity in a statistical representation of surface roughness. It includes the effect of junction growth and treats the sliding inception as a failure mechanism, which is characterized by loss of tangential stiffness. A comparison between the present model and a previously published friction model shows that the latter severely underestimates the maximum friction force by up to three orders of magnitude. Strong effects of the normal load, nominal contact area, mechanical properties, and surface roughness on the static friction coefficient are found, in breach of the classical laws of friction. Empirical equations for the maximum friction force, static friction coefficient, real contact area due to the normal load alone and at sliding inception as functions of the normal load, material properties, and surface roughness are presented and compared with some limited available experimental results.


2004 ◽  
Vol 126 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Lior Kogut ◽  
Izhak Etsion

A model that predicts the static friction for elastic-plastic contact of rough surfaces is presented. The model incorporates the results of accurate finite element analyses for the elastic-plastic contact, adhesion and sliding inception of a single asperity in a statistical representation of surface roughness. The model shows strong effect of the external force and nominal contact area on the static friction coefficient in contrast to the classical laws of friction. It also shows that the main dimensionless parameters affecting the static friction coefficient are the plasticity index and adhesion parameter. The effect of adhesion on the static friction is discussed and found to be negligible at plasticity index values larger than 2. It is shown that the classical laws of friction are a limiting case of the present more general solution and are adequate only for high plasticity index and negligible adhesion. Some potential limitations of the present model are also discussed pointing to possible improvements. A comparison of the present results with those obtained from an approximate CEB friction model shows substantial differences, with the latter severely underestimating the static friction coefficient.


2007 ◽  
Vol 129 (4) ◽  
pp. 754-760 ◽  
Author(s):  
Chul-Hee Lee ◽  
Andreas A. Polycarpou

An experimental study was conducted to measure the static friction coefficient under constant normal load and different interface conditions. These include surface roughness, dwell time, displacement rate, as well as the presence of traces of lubricant and wear debris at the interface. The static friction apparatus includes accurate measurement of friction, normal and lateral forces at the interface (using a high dynamic bandwidth piezoelectric force transducer), as well as precise motion control and measurement of the sliding mass. The experimental results show that dry surfaces are more dependent on the displacement rate prior to sliding inception compared to boundary lubricated surfaces in terms of static friction coefficient. Also, the presence of wear debris, boundary lubrication, and rougher surfaces decrease the static friction coefficient significantly compared to dry smooth surfaces. The experimental measurements under dry unlubricated conditions were subsequently compared to an improved elastic-plastic static friction model, and it was found that the model captures the experimental measurements of dry surfaces well in terms of the surface roughness.


2011 ◽  
Vol 301-303 ◽  
pp. 1109-1114
Author(s):  
Qian Qian Wang ◽  
Geng Chen Shi ◽  
Xin Xiong

Micro electro mechanical system (MEMS) has been increasingly used in military application. For the reliability and specialty of military requirements, the material of the MEMS device is supposed to be metal and the device is moveable. Lithographic, Galvanoforming, Abformung (LIGA) technology capable of producing high aspect ratio structures in metals like nickel is one of the important fabrication technologies in military MEMS. There are many moveable MEMS device like micro-gear and micro-slider producing by LIGA technology. But the moveable devices cannot behave well because of the friction effect. In this paper, an improved elastic-plastic model including roughness effects and an experimental procedure that predict the static friction prosperity of LIGA-processed nickel is proposed. Firstly, we use the 3D optical profilometer to research the surface roughness of LIGA-processed nickel, the surface heights distribution was found to be nearly Gaussian distribution. Secondly, the static friction model, the Kogut-Etsion (KE) model is adopted to obtain the static friction coefficient. Finally, a special designed static friction coefficient measurement apparatus is used to conduct the friction experiments. The results indicate that the surface roughness affects the friction and the smoother surface leads to a higher friction coefficient. Also good agreement was found between simulations and experimental results.


Sign in / Sign up

Export Citation Format

Share Document