Defect Green’s Function of Multiple Point-Like Inhomogeneities in a Multilayered Anisotropic Elastic Solid

2004 ◽  
Vol 71 (5) ◽  
pp. 672-676
Author(s):  
B. Yang

Defect Green’s function (GF) of multiple point-like inhomogeneities in a multilayered solid has been derived within the theory of linear anisotropic elasticity. It is related to the (reference) GF of the multilayered matrix excluding the inhomogeneities through the continuum Dyson’s equation. While the reference GF is available, the defect GF can be solved. The expressions are first analytically reduced by realizing the point-likeness of the inhomogeneities. The subsequent procedure involves the solution of the response of each individual inhomogeneity to a far-field straining in the multilayered matrix and a matrix inversion on the order of the number of inhomogeneities. Furthermore, the defect GF is applied to derive the field induced by inhomogeneous substitutions in a multilayered solid. Numerical results are reported for arrays of cubic and semispherical Ge inclusions in a Si/Ge superlattice. The numerical results have demonstrated the validity and efficiency of the present formulation.

2020 ◽  
Vol 25 (11) ◽  
pp. 2132-2152
Author(s):  
ShouMing Shang ◽  
PengFei Hou ◽  
J Tong

There are a number of plate-type piezoelectric devices in engineering, hence it is crucial to search for a method that can accurately acquire the electro-mechanical coupled field of a piezoelectric plate. A method for calculating the coupled field of an orthotropic piezoelectric plate with arbitrary thickness under an arbitrary electro-mechanical load is put forward in this article. First, the Green’s function solution of an orthotropic piezoelectric plate subjected to a line charge and a normal line force is derived based on the general solution of the orthotropic piezoelectric material. All stress and electric components of the orthotropic piezoelectric plate are derived when the general solution is substituted into suitable harmonic functions containing undetermined constants. Once the boundary conditions and electro-mechanical equilibrium conditions are satisfied, those constants can be solved. In addition, according to the obtained Green’s function solution and superposition principle, the coupled field of the orthotropic piezoelectric plate subjected to an arbitrary electro-mechanical load can be solved. Numerical results indicate that the convergence and precision of the method are quite good. A concise skill without repeated calculations is also presented for acquiring the coupled fields in the orthotropic piezoelectric plates with various thickness, which facilitates the effective design of plate thickness in plate-type piezoelectric devices. Finally, some valuable conclusions for the fine design of plate-type piezoelectric sensors, energy harvesters and actuators are presented based on the numerical results.


2018 ◽  
Vol 20 (38) ◽  
pp. 25044-25051 ◽  
Author(s):  
P. T. T. Le ◽  
K. Mirabbaszadeh ◽  
M. Davoudiniya ◽  
M. Yarmohammadi

Tuning of the electronic phase of Bernal bilayer black phosphorus was investigated using a charged impurity and an electric field beyond the continuum approximation: the Green's function technique.


2014 ◽  
Vol 28 (32) ◽  
pp. 1450252 ◽  
Author(s):  
M. Q. Owaidat ◽  
J. H. Asad ◽  
J. M. Khalifeh

The effective resistance between any pair of vertices (sites) on the three-dimensional decorated centered cubic lattices is determined by using lattice Green's function method. Numerical results are presented for infinite decorated centered cubic networks. A mapping between the resistance of the edge-centered cubic lattice and that of the simple cubic lattice is shown.


Sign in / Sign up

Export Citation Format

Share Document