Optimization of Wall Cooling in Gas Turbine Combustor Through Three-Dimensional Numerical Simulation

2005 ◽  
Vol 127 (4) ◽  
pp. 704-723 ◽  
Author(s):  
R. Gordon ◽  
Y. Levy

This paper is concerned with improving the prediction reliability of CFD modeling of gas turbine combustors. CFD modeling of gas turbine combustors has recently become an important tool in the combustor design process, which till now routinely used the old “cut and try” design practice. Improving the prediction capabilities and reliability of CFD methods will reduce the cycle time between idea and a working product. The paper presents a 3D numerical simulation of the BSE Ltd. YT-175 engine combustor, a small, annular, reversal flow type combustor. The entire flow field is modeled, from the compressor diffuser to turbine inlet. The model includes the fuel nozzle, the vaporizer solid walls, and liner solid walls with the dilution holes and cooling louvers. A periodic 36 deg sector of the combustor is modeled using a hybrid structured/unstructured multiblock grid. The time averaged Navier-Stokes (N-S) equations are solved, using the k-ε turbulence model and the combined time scale (COMTIME)/PPDF models for modeling the turbulent kinetic energy reaction rate. The vaporizer and liner walls’ temperature is predicted by the “conjugate heat transfer” methodology, based on simultaneous solution of the heat transfer equations for the vaporizer and liner walls, coupled with the N-S equations for the fluids. The calculated results for the mass flux passing through the vaporizer and various holes and slots of the liner walls, as well as the jet angle emerging from the liner dilution holes, are in very good agreement with experimental measurements. The predicted location of the liner wall hot spots agrees well with the position of deformations and cracks that occurred in the liner walls during test runs of the combustor. The CFD was used to modify the YT-175 combustion chamber to eliminate structural problems, caused by the liner walls overheating, that were observed during its development.

Author(s):  
H. X. Liang ◽  
Q. W. Wang ◽  
L. Q. Luo ◽  
Z. P. Feng

Three-dimensional numerical simulation was conducted to investigate the flow field and heat transfer performance of the Cross-Wavy Primary Surface (CWPS) recuperators for microturbines. Using high-effective compact recuperators to achieve high thermal efficiency is one of the key techniques in the development of microturbine in recent years. Recuperators need to have minimum volume and weight, high reliability and durability. Most important of all, they need to have high thermal-effectiveness and low pressure-losses so that the gas turbine system can achieve high thermal performances. These requirements have attracted some research efforts in designing and implementing low-cost and compact recuperators for gas turbine engines recently. One of the promising techniques to achieve this goal is the so-called primary surface channels with small hydraulic dimensions. In this paper, we conducted a three-dimensional numerical study of flow and heat transfer for the Cross-Wavy Primary Surface (CWPS) channels with two different geometries. In the CWPS configurations the secondary flow is created by means of curved and interrupted surfaces, which may disturb the thermal boundary layers and thus improve the thermal performances of the channels. To facilitate comparison, we chose the identical hydraulic diameters for the above four CWPS channels. Since our experiments on real recuperators showed that the Reynolds number ranges from 150 to 500 under the operating conditions, we implemented all the simulations under laminar flow situations. By analyzing the correlations of Nusselt numbers and friction factors vs. Reynolds numbers of the four CWPS channels, we found that the CWPS channels have superior and comprehensive thermal performance with high compactness, i.e., high heat transfer area to volume ratio, indicating excellent commercialized application in the compact recuperators.


Author(s):  
Alejandro Herna´ndez Rossette ◽  
Zdzislaw Mazur C. ◽  
Jesu´s Cordero Guridi ◽  
Eric Chumacero Polanco

As a gas turbine entry temperature (TET) increases, thermal loading on first stage blades increases too and therefore, a variety of cooling techniques and thermal barrier coatings (TBCs) are used to maintain the blade temperature within the acceptable limits. In this work a multi-block three dimensional Navier-Stokes commercial turbomachinery oriented CFD-code has been used to compute steady state conjugated heat transfer (CHT) on the blade suction and pressure coated sides of a rotating first inter-stage (nozzle and bucket) with cooling holes of a 60 MW Gas turbine. A Spallart Allmaras model was used for modeling the turbulence. Convection and radiation were modeled for a super alloy blade with and without TBC. The CFD simulations were configured with a mesh domain of nozzle and bucket inter-stage in order to predict the fluid parameters at inlet and outlet of bucket for validate with turbine inter-stage parameter data test of gas turbine manufacturer. The effects of blade surface temperature changes were simulated with both configurations coated and uncoated blades.


Author(s):  
Gerald J. Micklow ◽  
Insoo Cho

In gas turbine combustors, enhanced atomization through the whole combustor region is essential for satisfactory performance since droplet size and distribution can have direct impact on almost all key aspects of combustion. To predict these flows, KIVA-II, a three-dimensional full Reynolds-averaged Navier-Stokes solver with the capability to handle finite rate chemistry and liquid spray injection is utilized. The Monte-Carlo based spray model in KIVA-II was developed to predict the flows in internal combustion engines and includes submodels for drop injection, breakup, coalescence, and evaporation. To assess the validity of the spray model for gas turbine combustors, numerical flow field predictions have been compared with experimental data provided by University of California, Irvine (UCI) Combustion Laboratory. The predicted spray behavior is in satisfactory agreement between the numerical prediction and the experiment downstream near the fuel injector. However, far downstream of the nozzle exit the deviation between the numerical results and the experimental data increases.


2009 ◽  
Vol 132 (2) ◽  
Author(s):  
P. Kumar ◽  
V. Eswaran

This article presents a numerical simulation of combined radiation and natural convection in a three-dimensional differentially heated rectangular cavity with two opposite side walls kept at a temperature ratio Th/Tc=2.0 and Tc=500 K, with others walls insulated. A non-Boussinesq variable density approach is used to incorporate density changes due to temperature variation. The Navier–Stokes (NSE), temperature, as well as the radiative transfer (RTE) equations are solved numerically by a finite volume method, with constant thermophysical fluid properties (except density) for Rayleigh number Ra=105 and Prandtl number Pr=0.71. The convective, radiative, and total heat transfer on the isothermal and adiabatic walls is studied along with the flow phenomena. The results reveal an extraordinarily complex flow field, wherein, along with the main flow, many secondary flow regions and singular points exist at the different planes and are affected by the optical properties of the fluid. The heat transfer decreases with increase in optical thickness and the pure convection Nusselt number is approached as the optical thickness τ>100, but with substantially different velocity field. The wall emissivity has a strong influence on the heat transfer but the scattering albedo does not.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


2014 ◽  
Vol 1008-1009 ◽  
pp. 850-860 ◽  
Author(s):  
Zhou Wei Zhang ◽  
Jia Xing Xue ◽  
Ya Hong Wang

A calculation method for counter-current type coil-wound heat exchanger is presented for heat exchange process. The numerical simulation method is applied to determine the basic physical parameters of wound bundles. By controlling the inlet fluid velocity varying in coil-wound heat exchanger to program and calculate the iterative process. The calculation data is analyzed by comparison of numerical result and the unit three dimensional pipe bundle model was built. Studies show that the introduction of numerical simulation can simplify the pipe winding process and accelerate the calculation and design of overall configuration in coil-wound heat exchanger. This method can be applied to the physical modeling and heat transfer calculation of pipe bundles in coil wound heat exchanger, program to calculate the complex heat transfer changing with velocity and other parameters, and optimize the overall design and calculation of spiral bundles.


Sign in / Sign up

Export Citation Format

Share Document