Hopf Bifurcation of a Magnetic Bearing System with Time Delay

2004 ◽  
Vol 127 (4) ◽  
pp. 362-369 ◽  
Author(s):  
J. C. Ji ◽  
Colin H. Hansen

This paper is concerned with a study of the influence of a time delay occurring in a PD feedback control on the dynamic stability of a rotor suspended by magnetic bearings. In the presence of geometric coordinate coupling and time delay, the equations of motion governing the response of the rotor are a set of two-degree-of-freedom nonlinear differential equations with time delay coupling in nonlinear terms. It is found that as the time delay increases beyond a critical value, the equilibrium position of the rotor motion becomes unstable and may bifurcate into two qualitatively different kinds of periodic motion. The resultant Hopf bifurcation is associated with two coincident pairs of complex conjugate eigenvalues crossing the imaginary axis. Based on the reduction of the infinite dimensional problem to the flow on a four-dimensional center manifold, the bifurcating periodic solutions are investigated using a perturbation method.

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Zizhen Zhang ◽  
Ruibin Wei ◽  
Wanjun Xia

AbstractIn this paper, we are concerned with a delayed smoking model in which the population is divided into five classes. Sufficient conditions guaranteeing the local stability and existence of Hopf bifurcation for the model are established by taking the time delay as a bifurcation parameter and employing the Routh–Hurwitz criteria. Furthermore, direction and stability of the Hopf bifurcation are investigated by applying the center manifold theorem and normal form theory. Finally, computer simulations are implemented to support the analytic results and to analyze the effects of some parameters on the dynamical behavior of the model.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Wanjun Xia ◽  
Soumen Kundu ◽  
Sarit Maitra

A delayed ecoepidemic model with ratio-dependent transmission rate has been proposed in this paper. Effects of the time delay due to the gestation of the predator are the main focus of our work. Sufficient conditions for local stability and existence of a Hopf bifurcation of the model are derived by regarding the time delay as the bifurcation parameter. Furthermore, properties of the Hopf bifurcation are investigated by using the normal form theory and the center manifold theorem. Finally, numerical simulations are carried out in order to validate our obtained theoretical results.


2009 ◽  
Vol 19 (11) ◽  
pp. 3733-3751 ◽  
Author(s):  
SUQI MA ◽  
ZHAOSHENG FENG ◽  
QISHAI LU

In this paper, we are concerned with the Rose–Hindmarsh model with time delay. By applying the generalized Sturm criterion, a number of imaginary roots of the characteristic equation are classified. The absolutely stable regions for any value of time delay are detected. By the continuous software DDE-Biftool, both the Hopf bifurcation curves and double Hopf bifurcation points are illustrated in parametric spaces. The normal form and universal unfolding at double Hopf bifurcation points are considered by the center manifold method. Some examples also indicate that the corresponding unique attractor near each double Hopf point is asymptotically stable.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Yuanyuan Chen ◽  
Ya-Qing Bi

A delay-differential modelling of vector-borne is investigated. Its dynamics are studied in terms of local analysis and Hopf bifurcation theory, and its linear stability and Hopf bifurcation are demonstrated by studying the characteristic equation. The stability and direction of Hopf bifurcation are determined by applying the normal form theory and the center manifold argument.


2009 ◽  
Vol 2009 ◽  
pp. 1-16 ◽  
Author(s):  
J. Xu ◽  
K. W. Chung

An efficient method is proposed to study delay-induced strong resonant double Hopf bifurcation for nonlinear systems with time delay. As an illustration, the proposed method is employed to investigate the 1 : 2 double Hopf bifurcation in the van der Pol system with time delay. Dynamics arising from the bifurcation are classified qualitatively and expressed approximately in a closed form for either square or cubic nonlinearity. The results show that 1 : 2 resonance can lead to codimension-three and codimension-two bifurcations. The validity of analytical predictions is shown by their consistency with numerical simulations.


2007 ◽  
Vol 17 (04) ◽  
pp. 1355-1366 ◽  
Author(s):  
WENWU YU ◽  
JINDE CAO

In this paper, a general two-neuron model with time delay is considered, where the time delay is regarded as a parameter. It is found that Hopf bifurcation occurs when this delay passes through a sequence of critical value. By analyzing the characteristic equation and using the frequency domain approach, the existence of Hopf bifurcation is determined. The stability of bifurcating periodic solutions are determined by the harmonic balance approach, Nyquist criterion and the graphic Hopf bifurcation theorem. Numerical results are given to justify the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document