DYNAMICS AND DOUBLE HOPF BIFURCATIONS OF THE ROSE–HINDMARSH MODEL WITH TIME DELAY

2009 ◽  
Vol 19 (11) ◽  
pp. 3733-3751 ◽  
Author(s):  
SUQI MA ◽  
ZHAOSHENG FENG ◽  
QISHAI LU

In this paper, we are concerned with the Rose–Hindmarsh model with time delay. By applying the generalized Sturm criterion, a number of imaginary roots of the characteristic equation are classified. The absolutely stable regions for any value of time delay are detected. By the continuous software DDE-Biftool, both the Hopf bifurcation curves and double Hopf bifurcation points are illustrated in parametric spaces. The normal form and universal unfolding at double Hopf bifurcation points are considered by the center manifold method. Some examples also indicate that the corresponding unique attractor near each double Hopf point is asymptotically stable.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Qingsong Liu ◽  
Yiping Lin ◽  
Jingnan Cao ◽  
Jinde Cao

The local reaction-diffusion Lengyel-Epstein system with delay is investigated. By choosingτas bifurcating parameter, we show that Hopf bifurcations occur when time delay crosses a critical value. Moreover, we derive the equation describing the flow on the center manifold; then we give the formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Finally, numerical simulations are performed to support the analytical results and the chaotic behaviors are observed.



2011 ◽  
Vol 21 (02) ◽  
pp. 437-452 ◽  
Author(s):  
SUQI MA ◽  
ZHAOSHENG FENG

In neural processing information, when we consider the finite propagation speed of signals in synapses, a time delay signal self-feedback mechanism is introduced into the well-known Rose–Hindmarsh Model. The Fold–Hopf bifurcation of this model is analyzed near equilibria. To discuss the singularity of this Codim-2 bifurcation, we discuss the normal form near the Fold–Hopf points on the center manifold. Bifurcations are studied and the stability is investigated by classifying neighborhood regimes near the Fold–Hopf points. Finally, as one of the most important electrical behaviors in neurons, the complex bursting-spiking firing modes associated with bifurcations are illustrated by numerical simulations.



2017 ◽  
Vol 10 (05) ◽  
pp. 1750061
Author(s):  
Yong Yao ◽  
Zuxiong Li ◽  
Huili Xiang ◽  
Hailing Wang ◽  
Zhijun Liu

In this paper, regarding the time delay as a bifurcation parameter, the stability and Hopf bifurcation of the model of competition between two species in a turbidostat with Beddington–DeAngelis functional response and discrete delay are studied. The Hopf bifurcations can be shown when the delay crosses the critical value. Furthermore, based on the normal form and the center manifold theorem, the type, stability and other properties of the bifurcating periodic solutions are determined. Finally, some numerical simulations are given to illustrate the results.



2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Xiaojian Zhou ◽  
Xin Chen ◽  
Yongzhong Song

We investigate the dynamics of a differential-algebraic bioeconomic model with two time delays. Regarding time delay as a bifurcation parameter, we show that a sequence of Hopf bifurcations occur at the positive equilibrium as the delay increases. Using the theories of normal form and center manifold, we also give the explicit algorithm for determining the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions. Numerical tests are provided to verify our theoretical analysis.



2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Zizhen Zhang ◽  
Ruibin Wei ◽  
Wanjun Xia

AbstractIn this paper, we are concerned with a delayed smoking model in which the population is divided into five classes. Sufficient conditions guaranteeing the local stability and existence of Hopf bifurcation for the model are established by taking the time delay as a bifurcation parameter and employing the Routh–Hurwitz criteria. Furthermore, direction and stability of the Hopf bifurcation are investigated by applying the center manifold theorem and normal form theory. Finally, computer simulations are implemented to support the analytic results and to analyze the effects of some parameters on the dynamical behavior of the model.



2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Gang Zhu ◽  
Junjie Wei

The dynamics of a coupled optoelectronic feedback loops are investigated. Depending on the coupling parameters and the feedback strength, the system exhibits synchronized asymptotically stable equilibrium and Hopf bifurcation. Employing the center manifold theorem and normal form method introduced by Hassard et al. (1981), we give an algorithm for determining the Hopf bifurcation properties.



2021 ◽  
Vol 31 (08) ◽  
pp. 2130022
Author(s):  
Miaorong Zhang ◽  
Xiaofang Zhang ◽  
Qinsheng Bi

This paper focuses on the influence of two scales in the frequency domain on the behaviors of a typical dynamical system with a double Hopf bifurcation. By introducing an external periodic excitation to the normal form of the vector field with double Hopf bifurcation at the origin and taking the exciting frequency far less than the natural frequency, a theoretical model with two scales in the frequency domain is established. Regarding the whole exciting term as a slow-varying parameter leads to a generalized autonomous system, in which the equilibrium branches and their bifurcations with the variation of the slow-varying parameter can be derived. With the increase of the exciting amplitude, different types of bifurcations may be involved in the generalized autonomous system, resulting in several qualitatively different forms of bursting attractors, the mechanism of which is presented by overlapping the transformed phase portraits and the bifurcations of the equilibrium branches. It is found that the single mode 2D torus may evolve to the bursting attractors with mixed modes, in which the trajectory alternates between the single mode oscillations and the mixed mode oscillations. Furthermore, the transitions between the quiescent states and the spiking states may not occur exactly at the bifurcation points because of the slow passage effect, while Hopf bifurcations may cause different forms of repetitive spiking oscillations.



2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Wanjun Xia ◽  
Soumen Kundu ◽  
Sarit Maitra

A delayed ecoepidemic model with ratio-dependent transmission rate has been proposed in this paper. Effects of the time delay due to the gestation of the predator are the main focus of our work. Sufficient conditions for local stability and existence of a Hopf bifurcation of the model are derived by regarding the time delay as the bifurcation parameter. Furthermore, properties of the Hopf bifurcation are investigated by using the normal form theory and the center manifold theorem. Finally, numerical simulations are carried out in order to validate our obtained theoretical results.



2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Yuanyuan Chen ◽  
Ya-Qing Bi

A delay-differential modelling of vector-borne is investigated. Its dynamics are studied in terms of local analysis and Hopf bifurcation theory, and its linear stability and Hopf bifurcation are demonstrated by studying the characteristic equation. The stability and direction of Hopf bifurcation are determined by applying the normal form theory and the center manifold argument.



2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Wanyong Wang ◽  
Lijuan Chen

A delayed epidemic model with nonlinear incidence rate which depends on the ratio of the numbers of susceptible and infectious individuals is considered. By analyzing the corresponding characteristic equations, the effects of time delay on the stability of the equilibria are studied. By choosing time delay as bifurcation parameter, the critical value of time delay at which a Hopf bifurcation occurs is obtained. In order to derive the normal form of the Hopf bifurcation, an extended method of multiple scales is developed and used. Then, the amplitude of bifurcating periodic solution and the conditions which determine the stability of the bifurcating periodic solution are obtained. The validity of analytical results is shown by their consistency with numerical simulations.



Sign in / Sign up

Export Citation Format

Share Document