scholarly journals Making Sense

2001 ◽  
Vol 123 (01) ◽  
pp. 44-46 ◽  
Author(s):  
Paul Sharke

BMW’s Z9 study car combines a haptic input device, on the console, with a display screen. With the long-range problem in view, BMW began speaking to the engineers at Immersion about the possibility of designing a mouse for the car. The target vehicle would be the 2001 7 series. An actual computer mouse in a car is one of those products that probably would cause a crash. According to an expert, strength of the mechatronics discipline is its notion of multivariable optimization, the idea of trying to solve the problem in the right place. Although the medical trainers for which Immersion provides tactile feedback look similar when seen from Schena’s favorite zoomed-out perspective, up close they are fundamentally distinct.

1999 ◽  
Vol 13 (4) ◽  
pp. 234-244
Author(s):  
Uwe Niederberger ◽  
Wolf-Dieter Gerber

Abstract In two experiments with four and two groups of healthy subjects, a novel motor task, the voluntary abduction of the right big toe, was trained. This task cannot usually be performed without training and is therefore ideal for the study of elementary motor learning. A systematic variation of proprioceptive, tactile, visual, and EMG feedback was used. In addition to peripheral measurements such as the voluntary range of motion and EMG output during training, a three-channel EEG was recorded over Cz, C3, and C4. The movement-related brain potential during distinct periods of the training was analyzed as a central nervous parameter of the ongoing learning process. In experiment I, we randomized four groups of 12 subjects each (group P: proprioceptive feedback; group PT: proprioceptive and tactile feedback; group PTV: proprioceptive, tactile, and visual feedback; group PTEMG: proprioceptive, tactile, and EMG feedback). Best training results were reported from the PTEMG and PTV groups. The movement-preceding cortical activity, in the form of the amplitude of the readiness potential at the time of EMG onset, was greatest in these two groups. Results of experiment II revealed a similar effect, with a greater training success and a higher electrocortical activation under additional EMG feedback compared to proprioceptive feedback alone. Sensory EMG feedback as evaluated by peripheral and central nervous measurements appears to be useful in motor training and neuromuscular re-education.


2016 ◽  
Vol 40 (6) ◽  
pp. 1626-1636 ◽  
Author(s):  
Tao Liu ◽  
Jianjun Li ◽  
Zhiqiang Zhang ◽  
Qiang Xu ◽  
Guangming Lu ◽  
...  

Objective: Addiction is a chronic relapsing brain disease. Brain structural abnormalities may constitute an abnormal neural network that underlies the risk of drug dependence. We hypothesized that individuals with Betel Quid Dependence (BQD) have functional connectivity alterations that can be described by long- and short-range functional connectivity density(FCD) maps. Methods: We tested this hypothesis using functional magnetic resonance imaging (fMRI) data from subjects of the Han ethnic group in Hainan, China. Here, we examined BQD individuals (n = 33) and age-, sex-, and education-matched healthy controls (HCs) (n = 32) in a rs-fMRI study to observe FCD alterations associated with the severity of BQD. Results: Compared with HCs, long-range FCD was decreased in the right anterior cingulate cortex (ACC) and increased in the left cerebellum posterior lobe (CPL) and bilateral inferior parietal lobule (IPL) in the BQD group. Short-range FCD was reduced in the right ACC and left dorsolateral prefrontal cortex (dlPFC), and increased in the left CPL. The short-range FCD alteration in the right ACC displayed a negative correlation with the Betel Quid Dependence Scale (BQDS) (r=-0.432, P=0.012), and the long-range FCD alteration of left IPL showed a positive correlation with the duration of BQD(r=0.519, P=0.002) in BQD individuals. Conclusions: fMRI revealed differences in long- and short- range FCD in BQD individuals, and these alterations might be due to BQ chewing, BQ dependency, or risk factors for developing BQD.


2013 ◽  
Vol 333-335 ◽  
pp. 805-810 ◽  
Author(s):  
Rong Bao Chen ◽  
Ning Li ◽  
Hua Feng Xiao ◽  
Wei Hou

With the development of economy, there are an increasing number of cars as well as traffic accidents, thus intensifying the need to take measures to reduce traffic accidents and protect the safety of life and property. Vehicle distance is one of the most important indexes of traffic safety. The measurement of safety vehicle distance has become an increasingly hot research area of intelligent transportation. Through analyzing the basic principle of stereo vision and calibrating the parameters of the CCD sensors both inside and outside, this paper comes up with a method to measure the former vehicle distance based on stereo vision and DSP. Once the vehicle speed and distance form a non-security association, it will give a warning, and upload data or force speed-limiting. According to the different coordinates of the obtained images of the target vehicle from the left and the right sensor, this method can identify feature points, calculate distance to the target vehicle, and analyze the security of vehicle distance. The experimental results show that this method has wide measurement range, high measurement accuracy, and fast operation rate, thus it can meet the actual needs of the measurement of safe vehicle distance in intelligent transportation.


2020 ◽  
Vol 64 (2) ◽  
pp. 120-127
Author(s):  
Balazs A. Kovacs ◽  
Tamas Insperger

A virtual stick balancing environment is developed using a computer mouse as input device. The development process is presented both on the hardware and software level. Two possible concepts are suggested to obtain the acceleration of the input device: discrete differentiation of the cursor position measured in pixels on the screen and by direct measurements via an Inertial Measurement Unit (IMU). The comparison of the inputs is carried out with test measurements using a crank mechanism. The measured signals are compared to the prescribed motion of the mechanism and it is shown that the IMU-based input signal fits better to the prescribed motion than the pixel-based input signal. The pixel-based input can also be applied after additional filtering, but this presents an extra computational delay in the feedback loop.


Author(s):  
Adam Myszkowski ◽  
Tomasz Bartkowiak ◽  
Roman Staniek

In the paper, authors present a design of a novel input device, in which, thanks to two ergonomically placed wheels, the operator can control the multi-axis manipulator with a single hand. The application of rotating elements provides the following benefits: achieving unlimited angular displacement, controlling numerous number of axes thanks to the certain combination of wheels motions, assigning force and position amplification individually, what helps to obtain both high speed and precision. In order to generate feedback force in the joystick, dedicated MR brakes were designed and built. The proposed feedback approach is an example of admittance control [1]. The joystick was built and tested at the Institute of Mechanical Technology of Poznan University of Technology. In the article, a theoretical model of the brake was shown together with analysis and discussion of its parameters. Additionally, it was supplemented with the results of theoretical and simulative studies. The paper also contains the outcome of the initial study focused on the analysis of the functionality, ergonomics and possibility of two-, three- and four axis control. It showed that the control algorithms played an essential role in motion control. They allow a rapid change of the generated resistance force during the change of motion direction. The obtained results validated the assumed design of the joystick with rotary elements and applied MR brakes due to the possibility of precisely control the motion resistance.


Author(s):  
Sujata Ramnarayan

Technologies are changing marketing due to the amount of information available to consumers, along with information being generated by consumers. Marketers face a challenge with greater volume and variety of data generated at a faster rate than ever before along with fragmentation of channels. This data when combined with artificial intelligence presents an opportunity to marketers to provide value add at a granular level and a personalized customer experience round the clock 24/7/365. Treating customers as individuals by offering an optimized personalized offering, sending the right personalized message at the right time through their preferred channel is the promise of data fed into AI algorithms. Artificial intelligence has the potential to transform companies by making sense out of an insanely voluminous variety of data being generated with its ability to serve customers more effectively and efficiently, personalizing at scale.


Sign in / Sign up

Export Citation Format

Share Document