scholarly journals What Do You Know?

2004 ◽  
Vol 126 (06) ◽  
pp. 24-26
Author(s):  
Jean Thilmany

This article focuses on the fact that when the time comes for mechanical engineering students to look for their first professional jobs, how much does it count which computer-aided design system they learned in college. In the 1980s, when most engineering organizations were newly acquainted with CAD and computer-aided manufacturing technologies, employers emphasized their need for engineers with very specific knowledge of a particular computer-aided engineering system. Mechanical engineering majors should understand the methods behind solid modeling, such as the principle of orthographic projection. The method of representing objects does not include the viewer’s perspective and can take a bit of practice to pick up. Eifel maintains the CAD programs UGS and I-deas from EDS, and Catia from Dassault Systemes of Paris. Engineers use ICEM Surf from ICEM Ltd. of Southampton, England, for surface design, and Power mill from Delcam Plc of Birmingham, England, for CAM.

2002 ◽  
Author(s):  
Vojin Nikolic

Since 1998 the author has been developing and teaching computer aided design and computer aided engineering courses intended for mechanical engineering students using the Pro/ENGINEER and I-DEAS software systems. An outline of one of these courses is given and the experience related to another such course is discussed in detail. Students find these courses challenging and enjoyable. The success rate has regularly been very high. By taking such CAD/CAE courses and learning these widely used industry-standard, high-end software systems the students gain valuable experience directly applicable as they join the workforce. The participating students have regularly rated these courses among the most popular ones. The paper discusses the author’s experiences in developing and teaching courses in CAD and CAE, which utilize high-end software. It is intended to provide two examples of successful blends of theoretical and practical topics that have worked very well.


2009 ◽  
Vol 419-420 ◽  
pp. 777-780 ◽  
Author(s):  
Erhan Ilhan Konukseven (1)

Computer Aided Design (CAD) tools are essential in modern industry. The students can actually use the skills and knowledge learned in “Computer Aided Engineering Graphics” course through their education and professional life. This paper describes and demonstrates how “ME-105 Computer Aided Engineering Graphics” course was offered to non-mechanical engineering students at Middle East Technical University (METU) using Web-based materials. Using the offered Web-based course model it is possible to give the course to 900 non-mechanical engineering students (450 students and 9 sections each semester) by teaching assistants. The model provides the same quality of teaching that we have in the engineering drawing course offered to 210 mechanical engineering students using the traditional classroom methods with full-time instructors.


2020 ◽  
Vol 1 ◽  
pp. 1795-1804
Author(s):  
S. Plappert ◽  
L. Hoppe ◽  
P. C. Gembarski ◽  
R. Lachmayer

AbstractFor an optimal preparation of mechanical engineering students for their future work life, the use of problem-based methods in design teaching is investigated. Therefore an intelligent tutoring system for computer aided design education will be developed, which can automatically evaluate computer aided design models of design students. A knowledge-based engineering system will be used to assistance the design students in the execution of design tasks. Using a practice-oriented example, the application and the advantages for teaching will be verified and discussed.


Author(s):  
A. N. Bozhko

Computer-aided design of assembly processes (Computer aided assembly planning, CAAP) of complex products is an important and urgent problem of state-of-the-art information technologies. Intensive research on CAAP has been underway since the 1980s. Meanwhile, specialized design systems were created to provide synthesis of assembly plans and product decompositions into assembly units. Such systems as ASPE, RAPID, XAP / 1, FLAPS, Archimedes, PRELEIDES, HAP, etc. can be given, as an example. These experimental developments did not get widespread use in industry, since they are based on the models of products with limited adequacy and require an expert’s active involvement in preparing initial information. The design tools for the state-of-the-art full-featured CAD/CAM systems (Siemens NX, Dassault CATIA and PTC Creo Elements / Pro), which are designed to provide CAAP, mainly take into account the geometric constraints that the design imposes on design solutions. These systems often synthesize technologically incorrect assembly sequences in which known technological heuristics are violated, for example orderliness in accuracy, consistency with the system of dimension chains, etc.An AssemBL software application package has been developed for a structured analysis of products and a synthesis of assembly plans and decompositions. The AssemBL uses a hyper-graph model of a product that correctly describes coherent and sequential assembly operations and processes. In terms of the hyper-graph model, an assembly operation is described as shrinkage of edge, an assembly plan is a sequence of shrinkages that converts a hyper-graph into the point, and a decomposition of product into assembly units is a hyper-graph partition into sub-graphs.The AssemBL solves the problem of minimizing the number of direct checks for geometric solvability when assembling complex products. This task is posed as a plus-sum two-person game of bicoloured brushing of an ordered set. In the paradigm of this model, the brushing operation is to check a certain structured fragment for solvability by collision detection methods. A rational brushing strategy minimizes the number of such checks.The package is integrated into the Siemens NX 10.0 computer-aided design system. This solution allowed us to combine specialized AssemBL tools with a developed toolkit of one of the most powerful and popular integrated CAD/CAM /CAE systems.


Author(s):  
А.И. Гайкович ◽  
С.И. Лукин ◽  
О.Я. Тимофеев

Процесс создания проекта судна или корабля рассматривается как преобразование информации, содержащейся в техническом задании на проектирование, нормативных документах и знаниях проектанта, в информацию, объем которой позволяет реализовать проект. Проектирование может быть представлено как поиск решения в пространстве задач. Построение цепочки последовательно решаемых задач составляет методику проектирования. Проектные задачи могут быть разбиты на две группы. Первая группа ‒ это полностью формализуемые задачи, для решения которых есть известные алгоритмы. Например, построение теоретического чертежа по известным главным размерениям и коэффициентам формы. Ко второй группе задач можно отнести трудно формализуемые или неформализуемые задачи. Например, к задачам этого типа можно отнести разработку общего расположения корабля. Важнейшим инструментом проектирования современного корабля или судна является система ав­томатизированного проектирования (САПР). Решение САПР задач первой группы не представляет проблемы. Введение в состав САПР задач второй группы подразумевает разработку специального ма­тематического аппарата, базой для которого, которым является искусственный интеллект, использующий теорию нечетких множеств. Однако, настройка искусственных нейронных сетей, создание шкал для функций принадлежности элементов нечетких множеств и функций предпочтений лица принимающего решения, требует участие человека. Таким образом, указанные элементы искусственного интеллекта фиксируют качества проек­танта как специалиста и создают его виртуальный портрет. The process of design a project of a ship is considered as the transformation of information contained in the design specification, regulatory documents and the designer's knowledge into information, the volume of which allows the project to be implemented. Designing can be represented as a search for a solution in the space of problems. The construction of a chain of sequentially solved tasks constitutes the design methodology. Design problems can be divided into two groups. The first group is completely formalizable tasks, for the solution of which there are known algorithms. For example, the construction of ship's surface by known main dimensions and shape coefficients. Tasks of the second group may in­clude those which are difficult to formalize or non-formalizable. For example, tasks of this type can include develop­ment of general arrangement of a ship. The most important design tool of a modern ship or vessel is a computer-aided design system (CAD). The solu­tion of CAD problems of the first group is not a problem. Introduction of tasks of the second group into CAD implies development of a special mathematical apparatus, the basis for which is artificial intelligence, which uses the theory of fuzzy sets. However, the adjustment of artificial neural networks, the creation of scales for membership functions of fuzzy sets elements and functions of preferences of decision maker, requires human participation. Thus, the above elements of artificial intelligence fix the qualities of the designer as a specialist and create his virtual portrait.


Sign in / Sign up

Export Citation Format

Share Document