An Experimental Investigation of a High Flux Heat Pipe Heat Sink

2005 ◽  
Vol 128 (1) ◽  
pp. 18-22 ◽  
Author(s):  
H. B. Ma ◽  
K. P. Lofgreen ◽  
G. P. Peterson

An experimental investigation of a highly efficient heat pipe heat sink was investigated, in which the interline region was optimized using sintered particles. The effects of condenser size, sintered particles, and forced air flow on the heat transfer performance were investigated experimentally. The experimental results indicated that the thin film evaporation could significantly increase the evaporating heat transfer coefficient and remove heat fluxes up to 800kW∕m2. In addition, a theoretical model capable of predicting the temperature drop occurring in this device was developed. The predicted performance was in good agreement with the experimental data and the resulting model can be used to assist in the design of high heat flux, heat pipe heat sinks.

Author(s):  
H. B. Ma ◽  
K. P. Lofgreen ◽  
G. P. Peterson

An experimental investigation on a highly efficient heat pipe heat sink was investigated, in which the interline region was optimized using sintered particles. The effects of condenser size, sintered particles, and forced air flow on the heat transfer performance were investigated experimentally. The experimental results indicated that the thin film evaporation could significantly increase the evaporating heat transfer coefficient and remove heat fluxes up to 800 kW/m2. In addition, a theoretical model capable of predicting the temperature drop occurring in the device was developed. The predicted performance was in good agreement with the experimental data. The resulting model can be used to assist in the design of high heat flux, heat pipe heat sinks for applications to both ground based and spacecraft applications.


Author(s):  
Sean W. Reilly ◽  
Ivan Catton

A novel fluid for use as a working fluid in a heat pipe has been tested at UCLA. The fluid was discovered originally in use with a device consisting of a metal tube charged with the patented inorganic aqueous solution (IAS), which is evaporated when the tube is evacuated before use. According to the patent, this evaporation leaves a thin film that allows the tube to carry high heat flux loads with low temperature drop across the tube in a solid state mode. However, various experiments with these tubes have produced inconsistent results, and there are some questions as to whether the fluid is completely evaporated. The research on which this work is based is focused on testing whether the charging fluid will operate as the working fluid in a heat pipe, in order to determine the nature of the IAS fluid. A heat pipe apparatus was charged with a biporous wick in order to investigate if the fluid plays a role in heat transfer. There are extensive data for this experiment using water as the working fluid, which will be used to compare the two sets of results. Testing has shown a reduction of the superheat required to drive heat fluxes through a wick compared to water by approximately 40%. Some experiments have shown that the operating (temperature) range of the IAS is much larger than a standard heat pipe. It is theorized that the increase in performance of the IAS is due to an increased thermal conductivity of the wick and increased capillarity. If this fluid is proven to be effective, it would lead to more effective and tunable heat transfer devices.


Author(s):  
Sean W. Reilly ◽  
Ivan Catton

A novel fluid for use as a working fluid in a heat pipe has been tested at UCLA. The fluid was discovered originally in use with a device consisting of a metal tube charged with the patented inorganic aqueous solution (IAS) which is evaporated when the tube is evacuated before use. According to the patent, this evaporation leaves a thin film which allows the tube to carry high heat flux loads with low temperature drop across the tube in a solid state mode. However, various experiments with these tubes have produced inconsistent results and there is some question as to whether the fluid is completely evaporated. The research on which this work is based, is focused on testing whether the charging fluid will operate as the working fluid in a heat pipe, in order to determine the nature of the IAS fluid. We charged a heat pipe apparatus with a biporous wick in order to investigate if the fluid plays a role in heat transfer. We have extensive data for this experiment using water as the working fluid which will use to compare the two sets of results. Testing has shown positive results in the reduction of the superheat required to drive heat fluxes through a wick compared to water. Some experiments have shown that the operating (temperature) range of the IAS is much larger than a standard heat pipe. It is theorized that the increase in performance of the IAS is due to an increased heat of vaporization. If this fluid is proven to be effective, it would lead to more effective and tunable heat transfer devices.


Author(s):  
Chang-Nian Chen ◽  
Ji-Tian Han ◽  
Wei-Ping Gong ◽  
Tien-Chien Jen

High heat flux is very dangerous for electronic heat transfer, such as IGBT (Insulated Gate Bipolar Transistor) cooling. In order to explore and master the heat transfer and hydraulic characteristics for IGBT cooling, experiments have been carried out to study the situation mentioned above in a flat plate heat sink, which was designed for high heat flux IGBT cooling. The geometrical parameters of the test section are as follows: outline dimension 229 mm × 124 mm × 30 mm; flow channels of 229 mm × 3 mm × 4 mm in total of 20. The experiments performed at atmospheric pressure and with inlet temperatures of 25–35°C, heat fluxes of 3.5–18.9 kW/m2. The influence of temperatures, heat fluxes on IGBT surface temperature and the cooling effect of the liquid cold plate have been investigated under a range of flow rates of 280–2300 kg/m2s. It was found that the heat transfer enhancement was very obvious using this kind of small sized channel for IGBT cooling, which was tens of times of the effect than air cooling or triple of the effect than that in normal sized channels. And the heat transfer enhancement increases with increasing heat fluxes and flow rates, while it decreases with increasing inlet temperatures. Most of the experimental results show good cooling effect as expected. However, it is dangerous for the cooling system under high heat fluxes when the system starts or stops suddenly, when the Respond Time (RT) is less than 5 seconds to cut off heated power. Also, the cooling performance is bad when the heat fluxes increased greatly, which is considered as abnormal situation in operating. The effect on IGBT surface temperature of heat flux is more obvious when the average Nusselt Number is smaller. For hydraulic characteristics observed, it was found that the flow friction increased with flow rates increasing, but the pressure drops of heated flow channels ahead were slightly larger than those back, especially under large flow rates conditions. That is because the temperatures of flow heated in channels ahead are lower than those back, which causes the fluid viscosity to be higher. At last, this paper suggested a series of method for enhancing heat transfer in flat plate heat sink, and also gave some ways to avoid heat transfer dangerous situations for IGBT cooling, which can provide a basis for thermodynamic and hydraulic calculation of flat plate heat sink design and lectotype.


Author(s):  
Jensen Hoke ◽  
Todd Bandhauer ◽  
Jack Kotovsky ◽  
Julie Hamilton ◽  
Paul Fontejon

Liquid-vapor phase change heat transfer in microchannels offers a number of significant advantages for thermal management of high heat flux laser diodes, including reduced flow rates and near constant temperature heat rejection. Modern laser diode bars can produce waste heat loads >1 kW cm−2, and prior studies show that microchannel flow boiling heat transfer at these heat fluxes is possible in very compact heat exchanger geometries. This paper describes further performance improvements through area enhancement of microchannels using a pyramid etching scheme that increases heat transfer area by ∼40% over straight walled channels, which works to promote heat spreading and suppress dry-out phenomenon when exposed to high heat fluxes. The device is constructed from a reactive ion etched silicon wafer bonded to borosilicate to allow flow visualization. The silicon layer is etched to contain an inlet and outlet manifold and a plurality of 40μm wide, 200μm deep, 2mm long channels separated by 40μm wide fins. 15μm wide 150μm long restrictions are placed at the inlet of each channel to promote uniform flow rate in each channel as well as flow stability in each channel. In the area enhanced parts either a 3μm or 6μm sawtooth pattern was etched vertically into the walls, which were also scalloped along the flow path with the a 3μm periodicity. The experimental results showed that the 6μm area-enhanced device increased the average maximum heat flux at the heater to 1.26 kW cm2 using R134a, which compares favorably to a maximum of 0.95 kw cm2 dissipated by the plain walled test section. The 3μm area enhanced test sections, which dissipated a maximum of 1.02 kW cm2 showed only a modest increase in performance over the plain walled test sections. Both area enhancement schemes delayed the onset of critical heat flux to higher heat inputs.


2014 ◽  
Vol 35 (11) ◽  
pp. 1394-1400
Author(s):  
周驰 ZHOU Chi ◽  
左敦稳 ZUO Dun-wen ◽  
孙玉利 SUN Yu-li

2006 ◽  
Vol 129 (3) ◽  
pp. 247-255 ◽  
Author(s):  
X. L. Xie ◽  
W. Q. Tao ◽  
Y. L. He

With the rapid development of the Information Technology (IT) industry, the heat flux in integrated circuit (IC) chips cooled by air has almost reached its limit at about 100W∕cm2. Some applications in high technology industries require heat fluxes well beyond such a limitation. Therefore, the search for a more efficient cooling technology becomes one of the bottleneck problems of the further development of the IT industry. The microchannel flow geometry offers a large surface area of heat transfer and a high convective heat transfer coefficient. However, it has been hard to implement because of its very high pressure head required to pump the coolant fluid through the channels. A normal channel size could not give high heat flux, although the pressure drop is very small. A minichannel can be used in a heat sink with quite a high heat flux and a mild pressure loss. A minichannel heat sink with bottom size of 20mm×20mm is analyzed numerically for the single-phase turbulent flow of water as a coolant through small hydraulic diameters. A constant heat flux boundary condition is assumed. The effect of channel dimensions, channel wall thickness, bottom thickness, and inlet velocity on the pressure drop, temperature difference, and maximum allowable heat flux are presented. The results indicate that a narrow and deep channel with thin bottom thickness and relatively thin channel wall thickness results in improved heat transfer performance with a relatively high but acceptable pressure drop. A nearly optimized structure of heat sink is found that can cool a chip with heat flux of 350W∕cm2 at a pumping power of 0.314W.


Sign in / Sign up

Export Citation Format

Share Document