Rigid Body Dynamics, Constraints, and Inverses

2005 ◽  
Vol 74 (1) ◽  
pp. 47-56 ◽  
Author(s):  
Hooshang Hemami ◽  
Bostwick F. Wyman

Rigid body dynamics are traditionally formulated by Lagrangian or Newton-Euler methods. A particular state space form using Euler angles and angular velocities expressed in the body coordinate system is employed here to address constrained rigid body dynamics. We study gliding and rolling, and we develop inverse systems for estimation of internal and contact forces of constraint. A primitive approximation of biped locomotion serves as a motivation for this work. A class of constraints is formulated in this state space. Rolling and gliding are common in contact sports, in interaction of humans and robots with their environment where one surface makes contact with another surface, and at skeletal joints in living systems. This formulation of constraints is important for control purposes. The estimation of applied and constraint forces and torques at the joints of natural and robotic systems is a challenge. Direct and indirect measurement methods involving a combination of kinematic data and computation are discussed. The basic methodology is developed for one single rigid body for simplicity, brevity, and precision. Computer simulations are presented to demonstrate the feasibility and effectiveness of the approaches presented. The methodology can be applied to a multilink model of bipedal systems where natural and/or artificial connectors and actuators are modeled. Estimation of the forces is accomplished by the inverse of the nonlinear plant designed by using a robust high gain feedback system. The inverse is shown to be stable, and bounds on the tracking error are developed. Lyapunov stability methods are used to establish global stability of the inverse system.

Author(s):  
Mate Antali ◽  
Gabor Stepan

AbstractIn this paper, the general kinematics and dynamics of a rigid body is analysed, which is in contact with two rigid surfaces in the presence of dry friction. Due to the rolling or slipping state at each contact point, four kinematic scenarios occur. In the two-point rolling case, the contact forces are undetermined; consequently, the condition of the static friction forces cannot be checked from the Coulomb model to decide whether two-point rolling is possible. However, this issue can be resolved within the scope of rigid body dynamics by analysing the nonsmooth vector field of the system at the possible transitions between slipping and rolling. Based on the concept of limit directions of codimension-2 discontinuities, a method is presented to determine the conditions when the two-point rolling is realizable without slipping.


2016 ◽  
Vol 79 ◽  
pp. 182-191 ◽  
Author(s):  
Grzegorz Kudra ◽  
Michał Szewc ◽  
Igor Wojtunik ◽  
Jan Awrejcewicz

Author(s):  
Huailong Shi ◽  
Liang Wang ◽  
Ahmed A. Shabana

When a rigid body negotiates a curve, the centrifugal force takes a simple form which is function of the body mass, forward velocity, and the radius of curvature of the curve. In this simple case of rigid body dynamics, curve negotiation does not lead to Coriolis forces. In the case of a flexible body negotiating a curve, on the other hand, the inertia of the body becomes function of the deformation, curve negotiations lead to Coriolis forces, and the expression for the deformation-dependent centrifugal forces becomes more complex. In this paper, the nonlinear constrained dynamic equations of motion of a flexible body negotiating a circular curve are used to develop a systematic procedure for the calculation of the centrifugal forces during curve negotiations. The floating frame of reference (FFR) formulation is used to describe the body deformation and define the nonlinear centrifugal and Coriolis forces. The algebraic constraint equations which define the motion trajectory along the curve are formulated in terms of the body reference and elastic coordinates. It is shown in this paper how these algebraic motion trajectory constraint equations can be used to define the constraint forces that lead to a systematic definition of the resultant centrifugal force in the case of curve negotiations. The embedding technique is used to eliminate the dependent variables and define the equations of motion in terms of the system degrees of freedom. As demonstrated in this paper, the motion trajectory constraints lead to constant generalized forces associated with the elastic coordinates, and as a consequence, the elastic velocities and accelerations approach zero in the steady state. It is also shown that if the motion trajectory constraints are imposed on the coordinates of a flexible body reference that satisfies the mean-axis conditions, the centrifugal forces take the same form as in the case of rigid body dynamics. The resulting flexible body dynamic equations can be solved numerically in order to obtain the body coordinates and evaluate numerically the constraint and centrifugal forces. The results obtained for a flexible body negotiating a circular curve are compared with the results obtained for the rigid body in order to have a better understanding of the effect of the deformation on the centrifugal forces and the overall dynamics of the body.


2012 ◽  
Vol 79 (2) ◽  
Author(s):  
Homin Choi ◽  
Bingen Yang

It is well known that use of quaternions in dynamic modeling of rigid bodies can avoid the singularity due to Euler rotations. This paper shows that the dynamic response of a rigid body modeled by quaternions may become unbounded when a torque is applied to the body. A theorem is derived, relating the singularity to the axes of the rotation and applied torque, and to the degrees of freedom of the body in rotation. To avoid such singularity, a method of equivalent couples is proposed.


2014 ◽  
Vol 67 (1) ◽  
Author(s):  
Oliver M. O'Reilly ◽  
Arun R. Srinivasa

In this expository article, a simple concise treatment of Lagrange's prescription for constraint forces and constraint moments in the dynamics of rigid bodies is presented. The treatment is suited to both Newton–Euler and Lagrangian treatments of rigid body dynamics and is illuminated with a range of examples from classical mechanics and orthopedic biomechanics.


2015 ◽  
Vol 69 ◽  
pp. 40-44
Author(s):  
H.M. Yehia ◽  
E. Saleh ◽  
S.F. Megahid

2014 ◽  
Vol 10 (2) ◽  
pp. e1003456 ◽  
Author(s):  
Pascal Carrivain ◽  
Maria Barbi ◽  
Jean-Marc Victor

1986 ◽  
Vol 54 (7) ◽  
pp. 585-586
Author(s):  
Stephen F. Felszeghy

Sign in / Sign up

Export Citation Format

Share Document