Load Distribution in Spiral Bevel Gears

2006 ◽  
Vol 129 (2) ◽  
pp. 201-209 ◽  
Author(s):  
Vilmos Simon

A new approach for the computerized simulation of load distribution in mismatched spiral bevel gears with point contact is presented. The loaded tooth contact is treated in a special way: it is assumed that the point contact under load spreads over a surface along the “potential” contact line (Simon, 2006, Mech. and Machine Theory, in press), which line is made up of the points of the mating tooth surfaces in which the separations of these surfaces are minimal, instead of assuming the usually applied elliptical contact area. The bending and shearing deflections of gear teeth, the local contact deformations of mating surfaces, gear body bending and torsion, the deflections of supporting shafts, and the manufacturing and alignment errors of mating members are included. The tooth deflections of the pinion and gear teeth are calculated by the finite element method. As the equations governing the load sharing among the engaged tooth pairs and load distribution along the tooth face are nonlinear, an approximate and iterative technique is used to solve this system of equations. The method is implemented by a computer program. By using this program the load and tooth contact pressure distributions, the angular displacements of the driven gear and the stresses in the pinion and gear teeth are calculated. The influence of design data and transmitted torque on load distribution parameters and fillet stresses is investigated and discussed.

Author(s):  
Vilmos V. Simon

In this study a novel method for load distribution calculation is applied to investigate the influence of tooth modifications on loaded tooth contact in face-hobbed spiral bevel gears. As a result of these modifications introduced to the teeth of the pinion, the gear pair becomes mismatched, and a point contact replaces the theoretical line contact. In the applied load distribution calculation it is assumed that the point contact under load is spreading over a surface along the whole or part of the “potential” contact line, which line is made up of the points of the mating tooth surfaces in which the separations of these surfaces are minimal. The separations of contacting tooth surfaces are calculated by applying the full theory of tooth surface generation in face-hobbed spiral bevel gears. A computer program was developed to implement the formulation provided above. By using this program the influence of tooth modifications introduced by the variation in machine tool settings and in head cutter profile on load and pressure distributions, transmission errors, and fillet stresses is investigated and discussed.


Author(s):  
Isamu Tsuji ◽  
Kazumasa Kawasaki

In this article, the assembly interference of spiral bevel gears in a Klingelnberg cyclo-palloid system is analyzed based upon tooth contact analysis and is investigated experimentally. Each backlash in increasing mounting distance of the pinion is calculated step by step, using developed tooth contact analysis. When the backlash increases, the assembly interference does not occur based upon the calculated results. When the backlash decreases and is less than zero, the assembly interference occurs. When the assembly interference occurs, the tooth surfaces should be modified in order to prevent the assembly interference. In this case, a method of the modification is proposed. The experimental results showed a good agreement with the analyzed ones. As a result, the validity of the analysis and avoidance of the assembly interference in this method was confirmed.


1998 ◽  
Vol 122 (4) ◽  
pp. 529-535 ◽  
Author(s):  
Vilmos Simon

A new approach for the computerized simulation of load distribution in mismatched hypoid gears with point contact is presented. The load distribution calculation is based on the bending and shearing deflections of gear teeth, on the local contact deformations of the mating surfaces, on gear body bending and torsion, on the deflections of the supporting shafts, and on the manufacturing and alignment errors of the mating members. The tooth deflections of the pinion and gear teeth are calculated by FEM, and the tooth contact is treated in a special way: it is assumed that the point contact under load spreads over a surface along the “potential” contact line, which line is made up of the points of the mating tooth surfaces in which the separations of these surfaces are minimal, instead of assuming an elliptical contact pattern. The system of governing equations is solved by approximations and by using the successive-over-relaxation method. The corresponding computer program is developed. The calculations, performed by this program, show that in the case of hypoid gears, the new approach gives a more realistic contact pattern and contact pressure than the usually assumed and applied elliptical contact approach, especially for the tooth pairs contacting on the toe and on the heel of teeth, and in the case of load distribution calculations made in misaligned gear pairs. By using this program the influence of design data on load distribution parameters is investigated and discussed. [S1050-0472(00)00504-3]


Author(s):  
Vilmos V. Simon

In this study an attempt is made to predict displacements and stresses in face-hobbed spiral bevel gears by using the finite element method. A displacement type finite element method is applied with curved, 20-node isoparametric elements. A method is developed for the automatic finite element discretization of the pinion and the gear. The full theory of the generation of tooth surfaces of face-hobbed spiral bevel gears is applied to determine the nodal point coordinates on tooth surfaces. The boundary conditions for the pinion and the gear are set automatically as well. A computer program was developed to implement the formulation provided above. By using this program the influence of design parameters and load position on tooth deflections and fillet stresses is investigated. On the basis of the results, obtained by performing a big number of computer runs, by using regression analysis and interpolation functions, equations for the calculation of tooth deflections and fillet stresses are derived.


1996 ◽  
Vol 118 (4) ◽  
pp. 580-585 ◽  
Author(s):  
R. F. Handschuh ◽  
T. P. Kicher

A modelling method for analyzing the three-dimensional thermal behavior of spiral bevel gears has been developed. The model surfaces are generated through application of differential geometry to the manufacturing process for face-milled spiral bevel gears. Contact on the gear surface is found by combining tooth contact analysis with three-dimensional Hertzian theory. The tooth contact analysis provides the principle curvatures and orientations of the two surfaces. This information is then used directly in the Hertzian analysis to find the contact size and maximum pressure. Heat generation during meshing is determined as a function of the applied load, sliding velocity, and coefficient of friction. Each of these factors change as the point of contact changes during meshing. A nonlinear finite element program was used to conduct the heat transfer analysis. This program permitted the time- and position-varying boundary conditions, found in operation, to be applied to a one-tooth model. An example model and analytical results are presented.


1987 ◽  
Vol 109 (2) ◽  
pp. 163-170 ◽  
Author(s):  
F. L. Litvin ◽  
Wei-Jiung Tsung ◽  
J. J. Coy ◽  
C. Heine

The authors proposed a method for generation of spiral bevel gears that provides conjugate gear tooth surfaces. This method is based on a new principle for the performance of parallel motion of a straight line that slides along two mating ellispses with related dimensions and parameters of orientation. The parallel motion of the straight line, that is the contact normal, is performed parallel to the line which passes through the foci of symmetry of the related ellipses. The manufacturing of gears can be performed with the existing Gleason’s equipment.


Author(s):  
Zhang-Hua Fong ◽  
Chung-Biau Tsay

Abstract Kinematical optimization and sensitivity analysis of circular-cut spiral bevel gears are investigated in this paper. Based on the Gleason spiral bevel gear generator and EPG test machine, a mathematical model is proposed to simulate the tooth contact conditions of the spiral bevel gear set. All the machine settings and assembly data are simulated by simplified parameters. The tooth contact patterns and kinematic errors are obtained by the proposed mathematical model and the tooth contact analysis techniques. Loaded tooth contact patterns are obtained by the differential geometry and the Hertz contact formulas. Tooth surface sensitivity due to the variation of machine settings is studied. The corrective machine settings can be calculated by the sensitive matrix and the linear regression method. An optimization algorithm is also developed to minimize the kinematic errors and the discontinuity of tooth meshing. According to the proposed studies, an improved procedure for development of spiral bevel gears is suggested. The results of this paper can be applied to determine the sensitivity and precision requirements in manufacturing, and improve the running quality of the spiral bevel gears. Two examples are presented to demonstrate the applications of the optimization model.


2013 ◽  
Vol 415 ◽  
pp. 636-641
Author(s):  
Xiao Zhong Deng ◽  
Geng Geng Li ◽  
Bing Yang Wei

In order to solve the small cutting strip width and poor surface quality problems when spiral bevel gears are CNC machined by ball-end mills£¬a machining method of face milling spiral bevel gears by using a disc cutter with a concave end is presented. Based on the researches of spiral bevel gears geometry structure, through a bigger diameter disc cutter with a concave end selected, the setting order of cutter orientation angles changed, and the functions of cutter tilt and yaw angle separated, tooth surfaces machined with big cutting strip width and no bottom land gouge can be expected. Finally, taking a spiral bevel gear pair as an example, through machining and measurement experiments, the method feasibility and correctness are verified


Sign in / Sign up

Export Citation Format

Share Document