scholarly journals A Bimodular Polyconvex Anisotropic Strain Energy Function for Articular Cartilage

2006 ◽  
Vol 129 (2) ◽  
pp. 250-258 ◽  
Author(s):  
Stephen M. Klisch

A strain energy function for finite deformations is developed that has the capability to describe the nonlinear, anisotropic, and asymmetric mechanical response that is typical of articular cartilage. In particular, the bimodular feature is employed by including strain energy terms that are only mechanically active when the corresponding fiber directions are in tension. Furthermore, the strain energy function is a polyconvex function of the deformation gradient tensor so that it meets material stability criteria. A novel feature of the model is the use of bimodular and polyconvex “strong interaction terms” for the strain invariants of orthotropic materials. Several regression analyses are performed using a hypothetical experimental dataset that captures the anisotropic and asymmetric behavior of articular cartilage. The results suggest that the main advantage of a model employing the strong interaction terms is to provide the capability for modeling anisotropic and asymmetric Poisson’s ratios, as well as axial stress–axial strain responses, in tension and compression for finite deformations.

1973 ◽  
Vol 46 (2) ◽  
pp. 398-416 ◽  
Author(s):  
R. W. Ogden

Abstract Many attempts have been made to reproduce theoretically the stress-strain curves obtained from experiments on the isothermal deformation of highly elastic ‘rubberlike’ materials. The existence of a strain-energy function has usually been postulated, and the simplifications appropriate to the assumptions of isotropy and incompressibility have been exploited. However, the usual practice of writing the strain energy as a function of two independent strain invariants has, in general, the effect of complicating the associated mathematical analysis (this is particularly evident in relation to the calculation of instantaneous moduli of elasticity) and, consequently, the basic elegance and simplicity of isotropic elasticity is sacrificed. Furthermore, recently proposed special forms of the strain-energy function are rather complicated functions of two invariants. The purpose of this paper is, while making full use of the inherent simplicity of isotropic elasticity, to construct a strain-energy function which: (i) provides an adequate representation of the mechanical response of rubberlike solids, and (ii) is simple enough to be amenable to mathematical analysis. A strain-energy function which is a linear combination of strain invariants defined by ϕ(α)=(α1α+α2α+α3α)/α is proposed; and the principal stretches α1, α2, and α3 are used as independent variables subject to the incompressibility constraint α1α2α3=1. Principal axes techniques are used where appropriate. An excellent agreement between this theory and the experimental data from simple tension, pure shear and equibiaxial tension tests is demonstrated. It is also shown that the present theory has certain repercussions in respect of the constitutive inequality proposed by Hill.


Author(s):  
J. G. Murphy

The phenomenological approach to the modelling of the mechanical response of arteries usually assumes a reduced form of the strain-energy function in order to reduce the mathematical complexity of the model. A common approach eschews the full basis of seven invariants for the strain-energy function in favour of a reduced set of only three invariants. It is shown that this reduced form is not consistent with the corresponding full linear theory based on infinitesimal strains. It is proposed that compatibility with the linear theory is an essential feature of any nonlinear model of arterial response. Two approaches towards ensuring such compatibility are proposed. The first is that the nonlinear theory reduces to the full six-constant linear theory, without any restrictions being imposed on the constants. An alternative modelling strategy whereby an anisotropic material is compatible with a simpler material in the linear limit is also proposed. In particular, necessary and sufficient conditions are obtained for a nonlinear anisotropic material to be compatible with an isotropic material for infinitesimal deformations. Materials that satisfy these conditions should be useful in the modelling of the crimped collagen fibres in the undeformed configuration.


Author(s):  
Reza Shirazi ◽  
Pasquale Vena ◽  
Robert L. Sah ◽  
Stephen M. Klisch

Despite distinct mechanical functions, biological soft tissues have a common microstructure in which a ground matrix is reinforced by a collagen (COL) fibril network. The highly anisotropic, heterogeneous, and asymmetric material properties caused by the microstructural nature of the COL fibril network suggest the importance, as well as the challenges, of accurately modeling soft tissue biomechanics. For soft fibrous tissues with multiple constituents, mathematical distribution functions have represented dispersed and continuous (i.e. non-discrete) fibrils oriented in all directions depending on the type of (and anatomical location in) the tissue under investigation [1–2]. These types of continuous fibril models have been used recently for articular cartilage [3–5]. The strain energy of the COL fibril network is calculated based on the response of individual fibrils in tension in different directions and integrated over a unit sphere at a material point. The specific aims of the current study were to: 1. introduce a novel approach to modeling a continuous distribution of COL fibrils in soft tissues; 2. develop a strain energy function for the COL network based on the proposed distribution function of COL fibrils; 3. derive the stress and material elasticity tensors for the COL network that may be “pre-stressed” in a stress-free natural configuration of the tissue; 4. propose a special model that may be appropriate for immature tissue and establish its suitability for use in a polyconvex tissue strain energy function.


1963 ◽  
Vol 36 (5) ◽  
pp. 1459-1496 ◽  
Author(s):  
Paul J. Blatz

Abstract A brief review of the theory of finite elasticity is presented. The theory is applied to the characterization of the mechanical response parameters of a polyurethan foam. The incorporation of compressibility and anisotropy effects into the strain energy function are discussed. An example of the behavior of a composite or filled foam is presented. Finally some of the problems associated with the molecular interpretation of mechanical parameters are discussed.


Author(s):  
Y. Anani ◽  
M. Asghari ◽  
R. Naghdabadi

The behavior of foams is typically rate-dependent and viscoelastic. In this paper, multiplicative decomposition of the deformation gradient and the second law of thermodynamics are employed to develop the differential constitutive equations for isotropic viscoelastic foams experiencing finite deformations, from a phenomenological point of view, i.e. without referring to micro-structural viewpoint. A model containing an equilibrium hyperelastic spring which is parallel to a Maxwell model has been utilized for introducing constitutive formulation. The deformation gradient tensor is decomposed into two parts: elastic deformation gradient tensor and viscoelastic deformation gradient tensor. A strain energy function is presented for the equilibrium spring as a function of the invariants of the left Cauchy-Green stretch tensor to obtain equilibrium stress components. Also, a strain energy function is presented for the intermediate spring as a function of the invariants of elastic deformation gradient tensor to determine overstress components. The constants of the strain energies are calculated by using nonlinear regulation numerical methods and by comparing with the experimental data obtained from uniaxial tension tests. The developed finite deformation constitutive equations are derived such that for every admissible process, the second law of thermodynamics is satisfied.


1999 ◽  
Author(s):  
Elisa C. Bass ◽  
Jeffrey C. Lotz

Abstract The mechanical behavior of the annulus fibrosus has typically been characterized through the use of uniaxial tests. In contrast, its in vivo constraints are multiaxial and likely result in a mechanical response very different from that observed to date in vitro. The goal of this study was to test the annulus in biaxial tension and use these data to determine an elastic strain energy function for the annulus. Our results demonstrate that the mechanical response of the annulus is dramatically influenced by a biaxial constraint, and that these experiments provide important data for the determination of the constitutive formulation for this strongly anisotropic and nonlinear tissue.


Author(s):  
David J. Steigmann

This chapter covers the notion of hyperelasticity—the concept that stress is derived from a strain—energy function–by invoking an analogy between elastic materials and springs. Alternatively, it can be derived by invoking a work inequality; the notion that work is required to effect a cyclic motion of the material.


Author(s):  
Afshin Anssari-Benam ◽  
Andrea Bucchi ◽  
Giuseppe Saccomandi

AbstractThe application of a newly proposed generalised neo-Hookean strain energy function to the inflation of incompressible rubber-like spherical and cylindrical shells is demonstrated in this paper. The pressure ($P$ P ) – inflation ($\lambda $ λ or $v$ v ) relationships are derived and presented for four shells: thin- and thick-walled spherical balloons, and thin- and thick-walled cylindrical tubes. Characteristics of the inflation curves predicted by the model for the four considered shells are analysed and the critical values of the model parameters for exhibiting the limit-point instability are established. The application of the model to extant experimental datasets procured from studies across 19th to 21st century will be demonstrated, showing favourable agreement between the model and the experimental data. The capability of the model to capture the two characteristic instability phenomena in the inflation of rubber-like materials, namely the limit-point and inflation-jump instabilities, will be made evident from both the theoretical analysis and curve-fitting approaches presented in this study. A comparison with the predictions of the Gent model for the considered data is also demonstrated and is shown that our presented model provides improved fits. Given the simplicity of the model, its ability to fit a wide range of experimental data and capture both limit-point and inflation-jump instabilities, we propose the application of our model to the inflation of rubber-like materials.


2021 ◽  
pp. 002199832110115
Author(s):  
Shaikbepari Mohmmed Khajamoinuddin ◽  
Aritra Chatterjee ◽  
MR Bhat ◽  
Dineshkumar Harursampath ◽  
Namrata Gundiah

We characterize the material properties of a woven, multi-layered, hyperelastic composite that is useful as an envelope material for high-altitude stratospheric airships and in the design of other large structures. The composite was fabricated by sandwiching a polyaramid Nomex® core, with good tensile strength, between polyimide Kapton® films with high dielectric constant, and cured with epoxy using a vacuum bagging technique. Uniaxial mechanical tests were used to stretch the individual materials and the composite to failure in the longitudinal and transverse directions respectively. The experimental data for Kapton® were fit to a five-parameter Yeoh form of nonlinear, hyperelastic and isotropic constitutive model. Image analysis of the Nomex® sheets, obtained using scanning electron microscopy, demonstrate two families of symmetrically oriented fibers at 69.3°± 7.4° and 129°± 5.3°. Stress-strain results for Nomex® were fit to a nonlinear and orthotropic Holzapfel-Gasser-Ogden (HGO) hyperelastic model with two fiber families. We used a linear decomposition of the strain energy function for the composite, based on the individual strain energy functions for Kapton® and Nomex®, obtained using experimental results. A rule of mixtures approach, using volume fractions of individual constituents present in the composite during specimen fabrication, was used to formulate the strain energy function for the composite. Model results for the composite were in good agreement with experimental stress-strain data. Constitutive properties for woven composite materials, combining nonlinear elastic properties within a composite materials framework, are required in the design of laminated pretensioned structures for civil engineering and in aerospace applications.


Sign in / Sign up

Export Citation Format

Share Document