Laser-Based Investigations of Thermoacoustic Instabilities in a Lean Premixed Gas Turbine Model Combustor

2006 ◽  
Vol 129 (3) ◽  
pp. 664-671 ◽  
Author(s):  
Peter Weigand ◽  
Wolfgang Meier ◽  
Xuru Duan ◽  
Manfred Aigner

Nonintrusive laser-based and optical measurements were performed in a gas turbine model combustor with a lean premixed swirl-stabilized CH4-air flame at atmospheric pressure. The main objective was to gain spatially and temporally resolved experimental data to enable the validation of numerical CFD results of oscillating flames. The investigated flame was operated at 25 kW and ϕ=0.70, and exhibited self-excited oscillations of more than 135 dB at ≈300Hz. The applied measurement techniques were three-dimensional (3D) laser doppler velocimetry (LDV) for velocity measurements, OH* chemiluminescence yielding information about the heat release and pointwise laser Raman scattering for the determination of joint probability density functions (PDFs) of the major species concentrations, temperature, and mixture fraction. Each of these techniques was applied with phase resolution with respect to the periodic fluctuation of the pressure in the combustion chamber that was measured with a microphone probe. The measurements finally revealed that the mixing of fuel and air in this technical premixing system was strongly affected by the pressure fluctuations leading to changes in equivalence ratio during an oscillation cycle that, in turn, induced the pressure fluctuations.

Author(s):  
Peter Weigand ◽  
Wolfgang Meier ◽  
Xuru Duan ◽  
Manfred Aigner

Non-intrusive laser-based and optical measurements were performed in a gas turbine model combustor with a lean premixed swirl-stabilized CH4-air flame at atmospheric pressure. The main objective was to gain spatially and temporally resolved experimental data to enable the validation of numerical CFD-results of oscillating flames. The investigated flame was operated at 25 kW and φ = 0.70 and exhibited self-excited oscillations of more than 135 dB at about 300 Hz. The applied measurement techniques were 3-D LDV for velocity measurements, OH* chemiluminescence yielding information about the heat release, and point-wise laser Raman scattering for the determination of joint PDFs of the major species concentrations, temperature, and mixture fraction. Each of these techniques was applied with phase resolution with respect to the periodic fluctuation of the pressure in the combustion chamber that was measured with a microphone probe. The measurements finally revealed that the mixing of fuel and air in this technical premixing system was strongly affected by the pressure fluctuations leading to changes in equivalence ratio during an oscillation cycle which in turn induced the pressure fluctuations.


Author(s):  
Axel Widenhorn ◽  
Berthold Noll ◽  
Manfred Aigner

In this contribution the three-dimensional reacting turbulent flow field of a swirl-stabilized gas turbine model combustor is analyzed numerically. The investigated partially premixed and lifted CH4/air flame has a thermal power load of Pth = 35kW and a global equivalence ratio of φ = 0.65. To study the reacting flow field the Scale Adaptive Simulation (SAS) turbulence model in combination with the Eddy Dissipation/Finite Rate Chemistry combustion model was applied. The simulations were performed using the commercial CFD software package ANSYS CFX-11.0. The numerically achieved time-averaged values of the velocity components and their appropriate turbulent fluctuations (RMS) are in very good agreement with the experimental values (LDA). The same excellent results were found for other flow quantities like temperature and mixture fraction. Here, the corresponding time-averaged and the appropriate RMS profiles are compared to Raman measurements. Furthermore the instantaneous flow features are discussed. In accordance with the experiment the numerical simulation evidences the existence of a precessing vortex core (PVC). The PVC rotates with a frequency of 1596Hz. Moreover it is shown that in the upper part of the combustion chamber a tornado-like vortical structure is established.


Author(s):  
Holger Ax ◽  
Ulrich Stopper ◽  
Wolfgang Meier ◽  
Manfred Aigner ◽  
Felix Güthe

Experimental results from optical and laser spectroscopic measurements on a scaled industrial gas turbine burner at elevated pressure are presented. Planar laser induced fluorescence on the OH radical and OH∗ chemiluminescence imaging were applied to natural gas/air flames for a qualitative analysis of the position and shape of the flame brush, the flame front and the stabilization mechanism. The results exhibit two different ways of flame stabilization, a conical more stable flame and a pulsating opened flame. For quantitative results, one-dimensional laser Raman scattering was applied to these flames and evaluated on an average and single-shot basis in order to simultaneously determine the major species concentrations, the mixture fraction, and the temperature. The mixing of fuel and air, as well as the reaction progress, could thus be spatially and temporally resolved, showing differently strong variations depending on the flame stabilization mode and the location in the flame.


Author(s):  
Holger Ax ◽  
Ulrich Stopper ◽  
Wolfgang Meier ◽  
Manfred Aigner ◽  
Felix Gu¨the

Experimental results from optical and laser spectroscopic measurements on a scaled industrial gas turbine (GT) burner at elevated pressure are presented. Planar laser induced fluorescence on the OH radical and OH* chemiluminescence imaging were applied to natural gas/air flames for a qualitative analysis of the position and shape of the flame brush, the flame front and the stabilization mechanism. The results exhibit two different ways of flame stabilization, a conical more stable flame and a pulsating opened flame. For quantitative results, 1D-laser Raman scattering was applied to these flames and evaluated on an average and single shot basis in order to simultaneously determine the major species concentrations, the mixture fraction and the temperature. The mixing of fuel and air as well as the reaction progress could thus be spatially and temporally resolved, showing differently strong variations depending on the flame stabilization mode and the location in the flame.


Author(s):  
Youichlrou Ohkubo ◽  
Yoshinorl Idota ◽  
Yoshihiro Nomura

Spray characteristics of liquid fuel air-assisted atomizers developed for a lean premixed-prevaporization combustor were evaluated under two kinds of conditions: in still air under non-evaporation conditions at atmospheric pressure and in a prevaporization-premixing tube under evaporation conditions with a running gas turbine. The non-evaporated mass fraction of fuel spray was measured using a phase Doppler particle analyzer in the prevaporization-premixing tube, in which the inlet temperature ranged from 873K to 1173K. The evaporation of the fuel spray in the tube is mainly controlled by its atomization and distribution. The NOx emission characteristics measured with a combustor test rig were evaluated with three-dimensional numerical simulations. A low non-evaporated mass fraction of less than 10% was effective in reducing the exhausted NOx from lean premixed-prevaporization combustion to about 1/6 times smaller than that from lean diffusion (spray) combustion. The flow patterns in the combustor are established by a swirl chamber in fuel-air preparation tube, and affect the flame stabilization of lean combustion.


Author(s):  
Martin von Hoyningen-Huene ◽  
Wolfram Frank ◽  
Alexander R. Jung

Unsteady stator-rotor interaction in gas turbines has been investigated experimentally and numerically for some years now. Most investigations determine the pressure fluctuations in the flow field as well as on the blades. So far, little attention has been paid to a detailed analysis of the blade pressure fluctuations. For further progress in turbine design, however, it is mandatory to better understand the underlying mechanisms. Therefore, computed space–time maps of static pressure are presented on both the stator vanes and the rotor blades for two test cases, viz the first and the last turbine stage of a modern heavy duty gas turbine. These pressure fluctuation charts are used to explain the interaction of potential interaction, wake-blade interaction, deterministic pressure fluctuations, and acoustic waveswith the instantaneous surface pressure on vanes and blades. Part I of this two-part paper refers to the same computations, focusing on the unsteady secondary now field in these stages. The investigations have been performed with the flow solver ITSM3D which allows for efficient simulations that simulate the real blade count ratio. Accounting for the true blade count ratio is essential to obtain the correct frequencies and amplitudes of the fluctuations.


2005 ◽  
Vol 127 (2) ◽  
pp. 372-379 ◽  
Author(s):  
Valter Bellucci ◽  
Bruno Schuermans ◽  
Dariusz Nowak ◽  
Peter Flohr ◽  
Christian Oliver Paschereit

In this work, the TA3 thermoacoustic network is presented and used to simulate acoustic pulsations occurring in a heavy-duty ALSTOM gas turbine. In our approach, the combustion system is represented as a network of acoustic elements corresponding to hood, burners, flames and combustor. The multi-burner arrangement is modeled by describing the hood and combustor as Multiple Input Multiple Output (MIMO) acoustic elements. The MIMO transfer function (linking acoustic pressures and acoustic velocities at burner locations) is obtained by a three-dimensional modal analysis performed with a Finite Element Method. Burner and flame analytical models are fitted to transfer function measurements. In particular, the flame transfer function model is based on the time-lag concept, where the phase shift between heat release and acoustic pressure depends on the time necessary for the mixture fraction (formed at the injector location) to be convected to the flame. By using a state-space approach, the time domain solution of the acoustic field is obtained. The nonlinearity limiting the pulsation amplitude growth is provided by a fuel saturation term. Furthermore, Helmholtz dampers applied to the gas turbine combustor are acoustically modeled and included in the TA3 model. Finally, the predicted noise reduction is compared to that achieved in the engine.


2012 ◽  
Vol 22 (4) ◽  
pp. 043128 ◽  
Author(s):  
Hiroshi Gotoda ◽  
Masahito Amano ◽  
Takaya Miyano ◽  
Takuya Ikawa ◽  
Koshiro Maki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document