On the Natural Convection in a Cavity With a Cooled Top Wall and Multiple Protruding Heaters

1995 ◽  
Vol 117 (1) ◽  
pp. 34-45 ◽  
Author(s):  
C. P. Desai ◽  
K. Vafai ◽  
M. Keyhani

Natural convection in rectangular enclosures with multiple protruding heaters mounted on one side wall is of relevance to the cooling of electronic equipment. In some configurations, the top wall behaves as the heat sink while the opposing vertical wall and the bottom wall are insulated. The present work examines the peculiarities introduced in the natural convection process for such configurations. The enclosure considered had five protrusions, cavity width to heater length ratio of 1.2 and cavity height to heater length ratio of 11. It is shown that for such configurations, a stable flow exists only at lower Rayleigh numbers and that above a certain critical Rayleigh number, only quasi-steady solutions exist. At low Rayleigh numbers(Ra* ≤ 1.5 × 107), the flow is stable and characterized by the presence of a primary flow cell and a counter-rotating secondary cell at the top of the enclosure. At higher Rayleigh numbers (Ra* ≥ 3 × 108), however, the isothermal top wall causes a periodic flow pattern to develop within the enclosure. Several interesting characteristics of the flow and temperature fields are presented. Results compared with previous experimental and numerical work are found to be in good agreement.

2000 ◽  
Vol 123 (1) ◽  
pp. 84-95 ◽  
Author(s):  
C. J. Ho ◽  
F. J. Tu

An experimental and numerical investigation is presented concerning the natural convection of water near its maximum-density in a differentially heated rectangular enclosure at high Rayleigh numbers, in which an oscillatory convection regime may arise. The water in a tall enclosure of Ay=8 is initially at rest and at a uniform temperature below 4°C and then the temperature of the hot vertical wall is suddenly raised and kept at a uniform temperature above 4°C. The cold vertical wall is maintained at a constant uniform temperature equal to that of the initial temperature of the water. The top and bottom walls are insulated. Using thermally sensitive liquid crystal particles as tracers, flow and temperature fields of a temporally oscillatory convection was documented experimentally for RaW=3.454×105 with the density inversion parameter θm=0.5. The oscillatory convection features a cyclic sequence of onset at the lower quarter-height region, growth, and decay of the upward-drifting secondary vortices within counter-rotating bicellular flows in the enclosure. Two and three-dimensional numerical simulations corresponding to the visualization experiments are undertaken. Comparison of experimental with numerical results reveals that two-dimensional numerical simulation captures the main features of the observed convection flow.


2016 ◽  
Vol 20 (5) ◽  
pp. 1407-1420 ◽  
Author(s):  
Jaime Sieres ◽  
Antonio Campo ◽  
José Martínez-Súarez

This paper presents an analytical and numerical computation of laminar natural convection in a collection of vertical upright-angled triangular cavities filled with air. The vertical wall is heated with a uniform heat flux; the inclined wall is cooled with a uniform temperature; while the upper horizontal wall is assumed thermally insulated. The defining aperture angle ? is located at the lower vertex between the vertical and inclined walls. The finite element method is implemented to perform the computational analysis of the conservation equations for three aperture angles ? (= 15?, 30? and 45?) and height-based modified Rayleigh numbers ranging from a low Ra = 0 (pure conduction) to a high 109. Numerical results are reported for the velocity and temperature fields as well as the Nusselt numbers at the heated vertical wall. The numerical computations are also focused on the determination of the value of the maximum or critical temperature along the hot vertical wall and its dependence with the modified Rayleigh number and the aperture angle.


2004 ◽  
Vol 126 (1) ◽  
pp. 76-83 ◽  
Author(s):  
G. Desrayaud ◽  
G. Lauriat

A numerical study of natural convection generated by a cold vertical wall of an enclosure with two openings on the opposite wall of finite thickness is presented. The enclosure is connected to an infinite reservoir filled with hot air. A two-dimensional laminar flow is assumed both within the enclosure and along the side of the bounding wall immersed into the reservoir. The effects of the size of the openings, spacing between the vertical walls and thermal resistance of the bounding wall are investigated. Numerical results are discussed for aspect ratios of the enclosure and Rayleigh numbers relevant to practical applications.


Author(s):  
Degan Gerard ◽  
Sokpoli Amavi Ernest ◽  
Akowanou Djidjoho Christian ◽  
Vodounnou Edmond Claude

This research was devoted to the analytical study of heat transfer by natural convection in a vertical cavity, confining a porous medium, and containing a heat source. The porous medium is hydrodynamically anisotropic in permeability whose axes of permeability tensor are obliquely oriented relative to the gravitational vector and saturated with a Newtonian fluid. The side walls are cooled to the temperature  and the horizontal walls are kept adiabatic. An analytical solution to this problem is found for low Rayleigh numbers by writing the solutions of mathematical model in polynomial form of degree n of the Rayleigh number. Poisson equations obtained are solved by the modified Galerkin method. The results are presented in term of streamlines and isotherms. The distribution of the streamlines and the temperature fields are greatly influenced by the permeability anisotropy parameters and the thermal conductivity. The heat transfer decreases considerably when the Rayleigh number increases.


1990 ◽  
Vol 112 (1) ◽  
pp. 130-136 ◽  
Author(s):  
Y. Asako ◽  
H. Nakamura ◽  
M. Faghri

Numerical solutions are obtained for a three-dimensional natural convection heat transfer problem in a vertical air slot with a thin hexagonal honeycomb core. The air slot is assumed to be of such dimensions that the velocity and temperature fields repeat themselves in successive enclosures. The numerical methodology is based on an algebraic coordinate transformation technique, which maps the complex cross section onto a rectangle, coupled with a calculation procedure for fully elliptic three-dimensional flows. The calculations are performed for the Rayleigh number in the range of 103 to 105, for a Prandtl number of 0.7, and for five values of the aspect ratio of the honeycomb enclosure. The average Nusselt number results for the case of a thin honeycomb core are compared with the previously obtained results for a thick honeycomb core with conduction and adiabatic side wall boundary conditions.


2008 ◽  
Author(s):  
Esam M. Alawadhi

Natural convection flow in a cube with a heated strip is solved numerically. The heated strip is attached horizontally to the front wall and maintained at high temperature, while the entire opposite wall is maintained at low temperature. The heated strip simulates an array of electronic chips The Rayleigh numbers of 104, 105, and 106 are considered in the analysis and the heated strip is horizontally attached to the wall. The results indicate that the heat transfer strongly depends on the position of the heated strip. The maximum Nusselt number can be achieved if the heater is placed at the lower half of the vertical wall. Increasing the Rayleigh number significantly promotes heat transfer in the enclosure. Flow streamlines and temperature contours are presented, and the results are validated against published works.


1991 ◽  
Vol 113 (4) ◽  
pp. 906-911 ◽  
Author(s):  
Y. Asako ◽  
H. Nakamura ◽  
Z. Chen ◽  
M. Faghri

Numerical solutions are obtained for a three-dimensional natural convection heat transfer problem in an inclined air slot with a hexagonal honeycomb core. The air slot is assumed to be long and wide such that the velocity and temperature fields repeat themselves in successive enclosures. The numerical methodology is based on an algebraic coordinate transformation technique, which maps the complex cross section onto a rectangle, coupled with a calculation procedure for fully elliptic three-dimensional flows. The calculations are performed for Rayleigh numbers in the range of 103 to 105, inclination angles in the range of −90 to 80 deg, Prandtl number of 0.7, and for five values of the aspect ratio. Three types of thermal boundary condition for the honeycomb side walls are considered. The average Nusselt number results are compared with those for a rectangular two-dimensional enclosure.


2013 ◽  
Vol 32 ◽  
pp. 61-73
Author(s):  
M Obayedullah ◽  
M M K Chowdhury

Natural convection flow in a rectangular cavity containing internally heated and electrically conducting fluid has been investigated numerically. The bottom wall of the cavity is linearly heated whereas the top wall is well insulated. The left and right vertical walls are maintained at constant hot and cold temperature respectively.Results have been obtained with respect to Rayleigh numbers and Hartmann numbers. Flow and temperature fields for these cases have been studied. Average Nusselt numbers at hot, cold and linearly heated bottom wall have been calculated. It is found that the temperature, fluid flow and heat transfer strongly depend on internal and external Rayleigh numbers and Hartmann numbers. DOI: http://dx.doi.org/10.3329/ganit.v32i0.13648 GANIT J. Bangladesh Math. Soc. (ISSN 1606-3694) 32 (2012) 61-73    


Author(s):  
K. Venkatadri ◽  
S. Abdul Gaffar ◽  
Ramachandra Prasad V. ◽  
B. Md. Hidayathulla Khan ◽  
O. Anwar Beg

Natural convection within trapezoidal enclosures finds significant practical applications. The natural convection flows play a prominent role in the transport of energy in energyrelated applications, in case of proper design of enclosures to achieve higher heat transfer rates. In the present study, a two-dimensional cavity with adiabatic right side wall is studied. The left side vertical wall is maintained at the constant hot temperature and the top slat wall is maintained at cold temperature. The dimensionless governing partial differential equations for vorticity-stream function are solved using the finite difference method with incremental time steps. The parametric study involves a wide range of Rayleigh number, Ra, 103 ≤ Ra ≤ 105 and Prandtl number (Pr = 0.025, 0.71 and 10). The fluid flow within the enclosure is formed with different shapes for different Pr values. The flow rate is increased by enhancing the Rayleigh number (Ra = 104 ). The numerical results are validated with previous results. The governing parameters in the present article, namely Rayleigh number and Prandtl number on flow patterns, isotherms as well as local Nusselt number are reported. 


2015 ◽  
Vol 813-814 ◽  
pp. 748-753 ◽  
Author(s):  
N. Nagasubramanian ◽  
M.R. Thansekhar ◽  
M. Venkatesan ◽  
K. Ramanathan

Results from numerical investigation of laminar natural convection inside a differentially heated square enclosure with a thin baffle attached to the cold wall are reported. The effect of the baffles on the flow and temperature fields were analyzed for baffle lengths equal to 20, 35 and 50 percent of the width of the enclosure, attached at three locations for Ra = 104, 105, 106 and Pr = 0.707. The presence of a baffle on the cold right wall affects the strength of the clockwise rotating primary vortex. Reduced flow and heat transfer are observed. Longer the baffle more pronounced the effect on the flow field. Secondary convection cells are seen between the baffle and the bottom wall for certain cases. Reduction in average Nusselt Number is observed on the cold wall with the baffle than the hot wall.


Sign in / Sign up

Export Citation Format

Share Document