gravitational vector
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 6)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Lonnie G. Petersen ◽  
Richard Stuart Whittle ◽  
Justin Hyunwoo Lee ◽  
Jeremy Sieker ◽  
Joseph Carlson ◽  
...  

Changes in the gravitational vector by postural changes or weightlessness induce fluid shifts impacting ocular hemodynamics and regional pressures. This investigation explores the impact of changes in direction of the gravitational vector on intraocular pressure (IOP), mean arterial pressure at eyelevel (MAPeye), and ocular perfusion pressure (OPP), which is critical for ocular health. Thirteen subjects underwent 360° of tilt (including both prone and supine positions) at 15º increments. At each angle, steady-state IOP and MAPeye were measured and OPP calculated as MAPeye-IOP. Experimental data were compared to a 6-compartment lumped parameter model of the eye. Mean IOP, MAPeye, and OPP significantly increased from 0º supine to 90º head down tilt (HDT) by 20.7±1.7 mmHg (ᵅD; < 0.001), 38.5±4.1 mmHg (ᵅD; < 0.001), and 17.4±3.2 mmHg (ᵅD; <0.001), respectively. Head up tilt (HUT) significantly decreased OPP by 16.5±2.5 mmHg (ᵅD; < 0.001). IOP was significantly higher in prone vs. supine position for much of the tilt range. Our study indicates that OPP is highly gravitationally dependent. Specifically, data show that MAPeye is more gravitationally dependent than IOP, thus causing OPP to increase during HDT and to decrease during HUT. Additionally, IOP was elevated in prone position compared to supine position due to the additional hydrostatic column between the base of the rostral globe to the mid-caudal plane, supporting the notion that hydrostatic forces play an important role in ocular hemodynamics. Changes in OPP as a function of changes in gravitational stress and/or weightlessness may play a role in the pathogenesis of spaceflight-associated neuro-ocular syndrome.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Christian Gross ◽  
Sotirios Karamitsos ◽  
Giacomo Landini ◽  
Alessandro Strumia

Abstract A new dark sector consisting of a pure non-abelian gauge theory has no renormalizable interaction with SM particles, and can thereby realise gravitational Dark Matter (DM). Gauge interactions confine at a scale ΛDM giving bound states with typical lifetimes $$ \tau \sim {M}_{\mathrm{P}1}^4/{\Lambda}_{\mathrm{DM}}^5 $$ τ ∼ M P 1 4 / Λ DM 5 that can be DM candidates if ΛDM is below 100 TeV. Furthermore, accidental symmetries of group-theoretical nature produce special gravitationally stable bound states. In the presence of generic Planck-suppressed operators such states become long-lived: SU(N) gauge theories contain bound states with $$ \tau \sim {M}_{\mathrm{P}1}^8/{\Lambda}_{\mathrm{DM}}^9 $$ τ ∼ M P 1 8 / Λ DM 9 ; even longer lifetimes τ = (MPl/ΛDM)2N−4/ΛDM arise from SO(N) theories with N ≥ 8, and possibly from F4 or E8. We compute their relic abundance generated by gravitational freeze-in and by inflationary fluctuations, finding that they can be viable DM candidates for ΛDM ≳ 1010 GeV.


Author(s):  
Degan Gerard ◽  
Sokpoli Amavi Ernest ◽  
Akowanou Djidjoho Christian ◽  
Vodounnou Edmond Claude

This research was devoted to the analytical study of heat transfer by natural convection in a vertical cavity, confining a porous medium, and containing a heat source. The porous medium is hydrodynamically anisotropic in permeability whose axes of permeability tensor are obliquely oriented relative to the gravitational vector and saturated with a Newtonian fluid. The side walls are cooled to the temperature  and the horizontal walls are kept adiabatic. An analytical solution to this problem is found for low Rayleigh numbers by writing the solutions of mathematical model in polynomial form of degree n of the Rayleigh number. Poisson equations obtained are solved by the modified Galerkin method. The results are presented in term of streamlines and isotherms. The distribution of the streamlines and the temperature fields are greatly influenced by the permeability anisotropy parameters and the thermal conductivity. The heat transfer decreases considerably when the Rayleigh number increases.


Author(s):  
Juan Carlos Hernández-Durón ◽  
José Luis Ortiz-Simón ◽  
Martha Aguilera-Hernandez ◽  
Daniel Olivares-Caballero

The article shows the needed procedure to obtain the dynamic model of a robot, with the purpose of being able to follow a planned path using the control law “CTC” Computed Torque Control. The robot was designed in a simple way for didactic reasons, this robot has three degrees of freedom, four links and three joints to move around in the work place. Two out of these joints are rotatory joints meanwhile the third one is a prismatic joint. The dynamic model of the robot is obtained using the Jacobians and Christoffel symbols of the center of mas of each link. Also including the Gravitational vector and the frictions of each joint. The objective of the dynamic model is to be able to simulate the robot in “Simulink” and test different paths using the computed torque control in which the gains of the control will be manipulated until a value that satisfies the desired path is found


2019 ◽  
Vol 122 (2) ◽  
pp. 572-584
Author(s):  
Steven Morrison ◽  
Justin J. Kavanagh ◽  
Karl M. Newell

Many experiments have shown independence of the index finger dynamics under bilateral postural tremor protocols. Here we investigated in young adults the dynamics of bilateral multidirectional postural tremor and forearm muscle activity under the progressively fatiguing conditions supporting an external weight to the point of induced postural failure. When no loads were applied, tremor in the vertical (VT) and mediolateral (ML) directions was similar with prominent peaks within 2- to 4-Hz and 8- to 12-Hz bandwidths. Contrastingly tremor in the anterior-posterior (AP) direction was characterized by a single peak between 0 and 2 Hz. Although no tremor coupling occurred cross limbs, strong within-limb coupling was found between ML and VT directions when no loads were applied (coherence range: 0.77–0.85), implying that these oscillations are related and likely derived from mechanical sources. Applying an external load to the index finger(s) led to significant increases in the amplitude of VT tremor and EMG activity within that limb but also caused increases in tremor directions not aligned with the gravitational vector (AP and ML). Significant increases in VT and ML tremor and EMG activity in the contralateral (unloaded) limb were also found when a single index finger was loaded; however, this bilateral increase did not align with increases in interlimb coupling (coherence <0.21). The effects of fatigue caused by prolonged loading were widespread, affecting tremor and muscle activity in both limbs through a combination of neural and mechanical mechanisms. The single- and dual-limb loading to fatigue increased neural overflow but not tremor coupling between the index fingers. NEW & NOTEWORTHY This study investigated bilateral multidirectional tremor under unloaded and loaded conditions. We found that tremor in the mediolateral and vertical directions within a limb were strongly coupled, a result not reported previously. Furthermore, when holding a weight to failure, tremor in all directions increased. Tremor also increased in the contralateral (unloaded) limb despite no interlimb coupling. This contralateral increase in tremor following loading a limb until fatigue is hypothesized to stem from motor-overflow effects.


2019 ◽  
Vol 50 (11) ◽  
pp. 1809
Author(s):  
A. Ahmed ◽  
B. Grzadkowski ◽  
A. Socha

2016 ◽  
Vol 10 (4) ◽  
Author(s):  
Hung V. Dao ◽  
Takashi Komeda

This paper presents a new method for estimating the tilt angles of endoscopic images. Disorientation is one of the major challenges during natural orifice translumenal endoscopic surgery (NOTES). Reorientation allows surgeons or gastroenterologists to work in off-axis conditions and provides an important reference for coupling a secondary image. Some published studies of angle estimation for NOTES still have the limitation under the influence of movement or vibration. This study proposes a new sensor-fusion method for reducing the shock-based error. A triaxial accelerometer measures the gravitational vector (g-components) in all static states. When motion appears, the angular velocity from a triaxial gyroscope is used to calculate the elemental changes in g-components. A so-called predict-and-choose process relies on this data to predict the future state by giving many prediction values. The relationship between these values, the newest accelerometer readings, and their variation determine the final choice. Hence, under all conditions, the gravitational components are iteratively estimated to calculate the tilt angles. The result is evaluated by being applied in a well-known application, endoscopic horizon stabilization. Compared with the reference method, the proposed method has notable advantages. The simulation and experimental results show small errors, smooth angle change, and a small delay time. The tilt angles are reliable without any cumulative error under the prolonged motion. Therefore, this study gives surgeons or gastroenterologists an improved rectified image for reorienting under off-axis conditions. Further research will identify more applications for the development of surgical instruments for NOTES.


2016 ◽  
Vol 120 (8) ◽  
pp. 939-946 ◽  
Author(s):  
Allison P. Anderson ◽  
Jacob G. Swan ◽  
Scott D. Phillips ◽  
Darin A. Knaus ◽  
Nicholas T. Kattamis ◽  
...  

Intraocular pressure (IOP) initially increases when an individual enters microgravity compared with baseline values when an individual is in a seated position. This has been attributed to a headward fluid shift that increases venous pressures in the head. The change in IOP exceeds changes measured immediately after moving from seated to supine postures on Earth, when a similar fluid shift is produced. Furthermore, central venous and cerebrospinal fluid pressures are at or below supine position levels when measured initially upon entering microgravity, unlike when moving from seated to supine postures on Earth, when these pressures increase. To investigate the effects of altering gravitational forces on the eye, we made ocular measurements on 24 subjects (13 men, 11 women) in the seated, supine, and prone positions in the laboratory, and upon entering microgravity during parabolic flight. IOP in microgravity (16.3 ± 2.7 mmHg) was significantly elevated above values in the seated (11.5 ± 2.0 mmHg) and supine (13.7 ± 3.0 mmHg) positions, and was significantly less than pressure in the prone position (20.3 ± 2.6 mmHg). In all measurements, P < 0.001. Choroidal area was significantly increased in subjects in a microgravity environment ( P < 0.007) compared with values from subjects in seated (increase of 0.09 ± 0.1 mm2) and supine (increase of 0.06 ± 0.09 mm2) positions. IOP results are consistent with the hypothesis that hydrostatic gradients affect IOP, and may explain how IOP can increase beyond supine values in microgravity when central venous and intracranial pressure do not. Understanding gravitational effects on the eye may help develop hypotheses for how microgravity-induced visual changes develop.


Sign in / Sign up

Export Citation Format

Share Document