A Tissue-Like Culture System Using Microstructures: Influence of Extracellular Matrix Material on Cell Adhesion and Aggregation

1999 ◽  
Vol 121 (1) ◽  
pp. 35-39 ◽  
Author(s):  
G. Knedlitschek ◽  
F. Schneider ◽  
E. Gottwald ◽  
Th. Schaller ◽  
E. Eschbach ◽  
...  

Special microenvironmental conditions are required to induce and/or maintain specific qualities of differentiated cells. An important parameter is the three-dimensional tissue architecture that cannot be reproduced in conventional monolayer systems. Advanced tissue culture systems will meet many of these demands, but may reach their limits, especially when gradients of specific substances over distinct tissue layers must be established for long-term culture. These limitations may be overcome by incorporating microstructures into tissue-like culture systems. The microstructured cell support presented consists of a flat array of 625 cubic microcontainers with porous bottoms, in which cells can be supplied with specific media from both sides of the tissue layer. Permanent cell lines and primary rat hepatocytes have been used to test the culture system. In order to define reproducible conditions for tissue formation and for cell adherence to the structure, several ECM (extracellular matrix) components were tested for coating of microstructured substrata. The described tissue culture system offers great flexibility in adapting the cell support to specific needs.

2017 ◽  
Vol 8 ◽  
pp. 204173141772464 ◽  
Author(s):  
Yun-Min Kook ◽  
Yoon Jeong ◽  
Kangwon Lee ◽  
Won-Gun Koh

The extracellular matrix of most natural tissues comprises various types of cells, including fibroblasts, stem cells, and endothelial cells, which communicate with each other directly or indirectly to regulate matrix production and cell functionality. To engineer multicellular interactions in vitro, co-culture systems have achieved tremendous success achieving a more realistic microenvironment of in vivo metabolism than monoculture system in the past several decades. Recently, the fields of tissue engineering and regenerative medicine have primarily focused on three-dimensional co-culture systems using cellular scaffolds, because of their physical and biological relevance to the extracellular matrix of actual tissues. This review discusses several materials and methods to create co-culture systems, including hydrogels, electrospun fibers, microfluidic devices, and patterning for biomimetic co-culture system and their applications for specific tissue regeneration. Consequently, we believe that culture systems with appropriate physical and biochemical properties should be developed, and direct or indirect cell–cell interactions in the remodeled tissue must be considered to obtain an optimal tissue-specific microenvironment.


2021 ◽  
Author(s):  
Mattia Saggioro ◽  
Stefania D'Agostino ◽  
Anna Gallo ◽  
Sara Crotti ◽  
Sara D'Aronco ◽  
...  

Three-dimensional (3D) culture systems are progressively getting attention given their potential in overcoming limitations of the classical 2D in vitro systems. Among different supports for 3D cell culture, hydrogels (HGs)...


1985 ◽  
Vol 101 (3) ◽  
pp. 914-923 ◽  
Author(s):  
J Landry ◽  
D Bernier ◽  
C Ouellet ◽  
R Goyette ◽  
N Marceau

Liver cells isolated from newborn rats and seeded on a non-adherent plastic substratum were found to spontaneously re-aggregate and to form, within a few days, spheroidal aggregates that eventually reached a plateaued diameter of 150-175 micron. Analyses on frozen sections from these spheroids by immunofluorescence microscopy using antibodies to various cytoskeletal elements and extracellular matrix components revealed a sorting out and a histotypic reorganization of three major cell types. A first type consisted of cells that segregated out on the aggregate surface forming a monolayer cell lining; a second type was identified as hepatocytes that regrouped in small islands often defining a central lumen; and a third group of cells reorganized into bile duct-like structures. This intercellular organization in the aggregates was paralleled by the accumulation of extracellular matrix components (laminin, fibronectin, and collagen) and their deposition following a specific pattern around each cell population structure. Determinations of albumin secretion and tyrosine aminotransferase induction by dexamethasone and glucagon at various times after the initiation of the cultures revealed a maintenance of the hepatocyte-differentiated functions for at least up to 2 mo at the levels measured at 3-5 d. It is concluded that cells dispersed as single cells from newborn rat liver conserve in part the necessary information to reconstruct a proper three-dimensional cyto-architecture and that the microenvironment so generated most likely represents a basic requirement for the optimal functioning of these differentiated cells.


Author(s):  
Ryan Conder ◽  
Leon H. Chew ◽  
Fisal Elstone ◽  
Marianne Lankhorst ◽  
Adam Añonuevo ◽  
...  

Organoids are stem cell-derived structures that are generated in three-dimensional tissue culture. They are unique since they exhibit a high degree of self-organization and differentiation, and thus recapitulate many of the features of the tissues from which they were derived. Because of this, organoids are now firmly established as an essential tool in medical research, and have the potential to drastically reduce the number of animals required for experimentation.


Sign in / Sign up

Export Citation Format

Share Document